Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 18(4): 1842-1856, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30730747

RESUMO

Resistance to chemotherapy can occur through a wide variety of mechanisms. Resistance to tyrosine kinase inhibitors (TKIs) often arises from kinase mutations-however, "off-target" resistance occurs but is poorly understood. Previously, we established cell line resistance models for three TKIs used in chronic myeloid leukemia treatment, and found that resistance was not attributed entirely to failure of kinase inhibition. Here, we performed global, integrated proteomic and transcriptomic profiling of these cell lines to describe mechanisms of resistance at the protein and gene expression level. We used whole transcriptome sequencing and SWATH-based data-independent acquisition mass spectrometry (DIA-MS), which does not require isotopic labels and provides quantitative measurements of proteins in a comprehensive, unbiased fashion. The proteomic and transcriptional data were correlated to generate an integrated understanding of the gene expression and protein alterations associated with TKI resistance. We defined mechanisms of resistance and two novel markers, CA1 and alpha-synuclein, that were common to all TKIs tested. Resistance to all of the TKIs was associated with oxidative stress responses, hypoxia signatures, and apparent metabolic reprogramming of the cells. Metabolite profiling and glucose-dependence experiments showed that resistant cells had routed their metabolism through glycolysis (particularly through the pentose phosphate pathway) and exhibited disruptions in mitochondrial metabolism. These experiments are the first to report a global, integrated proteomic, transcriptomic, and metabolic analysis of TKI resistance. These data suggest that although the mechanisms are complex, targeting metabolic pathways along with TKI treatment may overcome pan-TKI resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Metaboloma , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Dasatinibe/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/fisiologia
2.
Cancer Res ; 80(3): 458-470, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31784425

RESUMO

Standard chemotherapy for acute myeloid leukemia (AML) targets proliferative cells and efficiently induces complete remission; however, many patients relapse and die of their disease. Relapse is caused by leukemia stem cells (LSC), the cells with self-renewal capacity. Self-renewal and proliferation are separate functions in normal hematopoietic stem cells (HSC) in steady-state conditions. If these functions are also separate functions in LSCs, then antiproliferative therapies may fail to target self-renewal, allowing for relapse. We investigated whether proliferation and self-renewal are separate functions in LSCs as they often are in HSCs. Distinct transcriptional profiles within LSCs of Mll-AF9/NRASG12V murine AML were identified using single-cell RNA sequencing. Single-cell qPCR revealed that these genes were also differentially expressed in primary human LSCs and normal human HSPCs. A smaller subset of these genes was upregulated in LSCs relative to HSPCs; this subset of genes constitutes "LSC-specific" genes in human AML. To assess the differences between these profiles, we identified cell surface markers, CD69 and CD36, whose genes were differentially expressed between these profiles. In vivo mouse reconstitution assays resealed that only CD69High LSCs were capable of self-renewal and were poorly proliferative. In contrast, CD36High LSCs were unable to transplant leukemia but were highly proliferative. These data demonstrate that the transcriptional foundations of self-renewal and proliferation are distinct in LSCs as they often are in normal stem cells and suggest that therapeutic strategies that target self-renewal, in addition to proliferation, are critical to prevent relapse and improve survival in AML. SIGNIFICANCE: These findings define and functionally validate a self-renewal gene profile of leukemia stem cells at the single-cell level and demonstrate that self-renewal and proliferation are distinct in AML. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/458/F1.large.jpg.


Assuntos
Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Análise de Célula Única/métodos , Animais , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA