Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Cells ; 12(16)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37626906

RESUMO

The aromatase-Cre recombinase (Cyp19-Cre) transgenic mouse model has been extensively used for placenta-specific gene inactivation. In a pilot study, we observed unexpected phenotypes using this mouse strain, which prompted an extensive characterization of Cyp19-Cre placental phenotypes using ROSAmT/mG transgenic reporter mice. The two strains were mated to generate bi-transgenic Cyp19-Cre;ROSAmT/mG mice following a standard transgenic breeding scheme, and placental and fetal tissues were analyzed on embryonic day 17.5. Both maternal and paternal Cre inheritance were analyzed by mating the respective Cyp19-Cre and ROSAmT/mG males and females. The genotype results showed the expected percentage of Cyp19-Cre;ROSAmT/mG fetuses (73%) and Cre mRNA was expressed in all of the Cyp19-Cre placentas. However, surprisingly, only about 50% of the Cyp19-Cre;ROSAmT/mG placentas showed Cre-mediated recombinase activity as demonstrated by placental enhanced green fluorescent protein (EGFP) expression. Further genetic excision analysis of the placentas revealed consistent results showing the absence of excision of the tdTomato in all of the Cyp19-Cre;ROSAmT/mG placentas lacking EGFP expression. Moreover, among the EGFP-expressing placentas, there was wide variability in recombination efficiency, even in placentas from the same litter, leading to a mosaic pattern of EGFP expression in different zones and cell types of the placentas. In addition, we observed a significantly higher percentage of Cre recombination activity in placentas with maternal Cre inheritance. Our results show frequent mosaicism, inconsistent recombination activity, and parent-of-origin effects in placentas from Cyp19-Cre;ROSAmT/mG mice, suggesting that tail-biopsy genotype results may not necessarily indicate the excision of floxed genes in Cyp19-Cre positive placentas. Thus, placenta-specific mutagenesis studies using the Cyp19-Cre model require extensive characterization and careful interpretation of the placental phenotypes for each floxed allele.


Assuntos
Rosa , Feminino , Gravidez , Masculino , Camundongos , Animais , Camundongos Transgênicos , Aromatase/genética , Projetos Piloto , Placenta , Melhoramento Vegetal , Mosaicismo
3.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067025

RESUMO

COP9 constitutive photomorphogenic homolog subunit 5 (COPS5), also known as Jab1 or CSN5, has been implicated in a wide variety of cellular and developmental processes. By analyzing male germ cell-specific COPS5-deficient mice, we have demonstrated previously that COPS5 is essential to maintain male germ survival and acrosome biogenesis. To further determine the role of Cops5 in peritubular myoid cells, a smooth muscle lineage surrounding seminiferous tubules, we herein derived mice conditionally deficient for the Cops5 gene in smooth muscle cells using transgenic Myh11-Cre mice. Although these conditional Cops5-deficient mice were born at the expected Mendelian ratio and appeared to be normal within the first week after birth, the homozygous mice started to show growth retardation after 1 week. These mice also exhibited a variety of developmental and reproductive disorders, including failure of development of reproductive organs in both males and females, spermatogenesis defects, and impaired skeletal development and immune functions. Furthermore, conditional Cops5-deficient mice revealed dramatic impairment of the endocrine system associated with testicular functions, including a marked reduction in serum levels of gonadotropins (follicle-stimulating hormone, luteinizing hormone), testosterone, insulin-like growth factor 1, and glucose, but not vasopressin. All homozygous mice died before age 67 days in the study. Collectively, our results provide novel evidence that Cops5 in smooth muscle lineage plays an essential role in postnatal development and reproductive functions.


Assuntos
Hormônio Luteinizante , Túbulos Seminíferos , Animais , Feminino , Masculino , Camundongos , Hormônio Foliculoestimulante , Homeostase , Camundongos Transgênicos , Miócitos de Músculo Liso , Espermatogênese/genética , Testículo/fisiologia , Testosterona
4.
J Inorg Biochem ; 223: 111546, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34304092

RESUMO

Recent studies have shown a correlation between COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the distinct, exaggerated immune response titled "cytokine storm". This immune response leads to excessive production and accumulation of reactive oxygen species (ROS) that cause clinical signs characteristic of COVID-19 such as decreased oxygen saturation, alteration of hemoglobin properties, decreased nitric oxide (NO) bioavailability, vasoconstriction, elevated cytokines, cardiac and/or renal injury, enhanced D-dimer, leukocytosis, and an increased neutrophil to lymphocyte ratio. Particularly, neutrophil myeloperoxidase (MPO) is thought to be especially abundant and, as a result, contributes substantially to oxidative stress and the pathophysiology of COVID-19. Conversely, melatonin, a potent MPO inhibitor, has been noted for its anti-inflammatory, anti-oxidative, anti-apoptotic, and neuroprotective actions. Melatonin has been proposed as a safe therapeutic agent for COVID-19 recently, having been given with a US Food and Drug Administration emergency authorized cocktail, REGEN-COV2, for management of COVID-19 progression. This review distinctly highlights both how the destructive interactions of HOCl with tetrapyrrole rings may contribute to oxygen deficiency and hypoxia, vitamin B12 deficiency, NO deficiency, increased oxidative stress, and sleep disturbance, as well as how melatonin acts to prevent these events, thereby improving COVID-19 prognosis.


Assuntos
Antioxidantes/farmacologia , Tratamento Farmacológico da COVID-19 , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , COVID-19/imunologia , COVID-19/metabolismo , Síndrome da Liberação de Citocina/imunologia , Citocinas/metabolismo , Hemeproteínas/metabolismo , Humanos , Ácido Hipocloroso/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , SARS-CoV-2 , Sono/efeitos dos fármacos , Deficiência de Vitaminas do Complexo B/metabolismo
5.
Arch Immunol Ther Exp (Warsz) ; 67(5): 295-309, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31286151

RESUMO

Macrophages (MФs) are the leukocytes produced from differentiation of monocytes and are located in almost all tissues of human body. They are involved in various processes, such as phagocytosis, innate and adaptive immunity, proinflammatory (M1) and anti-inflammatory (M2) activity, depending on the tissue microenvironment. They play a crucial role in pregnancy, and their dysfunction or alteration of polarity is involved in pregnancy disorders, like preeclampsia, recurrent spontaneous abortion, infertility, intrauterine growth restriction, and preterm labor. About 50-60% of decidual leukocytes are natural killer (NK) cells followed by MФs (the second largest population). MФs are actively involved in trophoblast invasion, tissue and vascular remodeling during early pregnancy, besides their role as major antigen-presenting cells in the decidua. These cells have different phenotypes and polarities in different stages of pregnancy. They have also been observed to enhance tumor growth by their anti-inflammatory activity (M2 type) and prevent immunogenic rejection. Targeted alteration of polarity (M1-M2 or vice versa) could be a major focus in the future treatment of pregnancy complications. This review is focused on the role of MФs in pregnancy, their involvement in pregnancy disorders, and decidual MФs as possible therapeutic targets for the treatment of pregnancy complications.


Assuntos
Decídua/imunologia , Macrófagos/fisiologia , Complicações na Gravidez/imunologia , Gravidez/imunologia , Animais , Implantação do Embrião/imunologia , Feminino , Humanos , Tolerância Imunológica , Macrófagos/imunologia , Macrófagos/patologia , Complicações na Gravidez/patologia , Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
PLoS One ; 13(1): e0191040, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324807

RESUMO

It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition of VEGF signaling may contribute to the shift in macrophage polarity observed in different pregnancy disorders, including preeclampsia.


Assuntos
Polaridade Celular , Decídua/citologia , Macrófagos/citologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Adulto , Linhagem Celular , Feminino , Humanos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA