Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(9): 3291-3297, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32672979

RESUMO

Maintenance of protein stability during manufacture, storage, and delivery is necessary for the successful development of a drug product. Herein, the utility of two compatible solutes-ectoine and hydroxyectoine-in stabilizing a model protein labeled Fab2 has been investigated. Specifically, the performance of ectoine and hydroxyectoine in stabilizing Fab2 in a spray-dried formulation at elevated temperature and after multiple freeze/thaw cycles has been compared with the performance of a formulation containing trehalose and a formulation containing no excipient as controls. In the solid state at 90 and 37 °C and in freeze concentrate systems, ectoine and hydroxyectoine suppress protein aggregation. Like trehalose, hydroxyectoine also limits N-terminal pyroglutamate formation in Fab2 in the solid state. The extent of protein stabilization is dependent on the excipient concentration in the formulation, but at a 1:1 excipient to protein mass ratio, hydroxyectoine is better than trehalose in stabilizing Fab2. The results presented here suggest that ectoine and hydroxyectoine are effective excipients for stabilizing therapeutic antibodies.


Assuntos
Diamino Aminoácidos/química , Anticorpos/química , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Excipientes/química , Liofilização/métodos , Congelamento , Estabilidade Proteica/efeitos dos fármacos , Proteínas/química , Temperatura , Trealose/química
2.
Mol Pharm ; 16(1): 173-183, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30484319

RESUMO

Lyophilized and spray-dried biopharmaceutical formulations are used to provide long-term stability for storage and transport, but questions remain about the molecular structure in these solid formulations and how this structure may be responsible for protein stability. Small-angle neutron scattering with a humidity control environment is used to characterize protein-scale microstructural changes in such solid-state formulations as they are humidified and dried in situ. The findings indicate that irreversible protein aggregates of stressed formulations do not form within the solid-state but do emerge upon reconstitution of the formulation. After plasticization of the solid-state matrix by exposure to humidity, the formation of reversibly self-associating aggregates can be detected in situ. The characterization of the protein-scale microstructure in these solid-state formulations facilitates further efforts to understand the underlying mechanisms that promote long-term protein stability.


Assuntos
Anticorpos Monoclonais/química , Estabilidade de Medicamentos , Liofilização , Estabilidade Proteica
3.
Mol Pharm ; 14(2): 546-553, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28094996

RESUMO

Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.


Assuntos
Excipientes/química , Proteínas/química , Anticorpos Monoclonais/química , Biofarmácia/métodos , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Liofilização/métodos , Imunoglobulina G/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Estabilidade Proteica
4.
Phys Chem Chem Phys ; 15(6): 1806-9, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23299223

RESUMO

The wide diversity of room-temperature ionic liquids (ILs) presents opportunities for studying, and controlling, polymer phase behavior. We have examined the phase behavior of poly(N-isopropyl acrylamide) (PNIPAM) in imidazolium ILs and their mixtures with water. We find there is a strong influence of the IL anion; specifically, the tetrafluoroborate anion yields a complex phase diagram with both LCST and UCST-type regimes. PNIPAM is generally miscible at intermediate IL-water compositions, although this range depends on the polymer molecular weight. Solvatochromatic characterization of both neat and mixed solvents reveals a key role for the interplay between PNIPAM-IL hydrogen-bonding and ion-pairing within the IL. These results demonstrate that appropriate selection of ILs should allow for increased control over polymer phase behavior.

5.
J Pharm Sci ; 110(3): 1093-1102, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33271136

RESUMO

In recent years, there has been increased scrutiny on the presence and formation of product-related particles in biopharmaceutical formulations. These types of particles, originating from the degradation of the active pharmaceutical ingredient or the excipients, can be challenging to identify and characterize due to their fragility. Additionally, the mechanisms of their formation as well as the impact of their presence on drug product safety can be complicated to elucidate. In this work, a case study is presented in which multiple batches of one formulated monoclonal antibody (mAb-A) were analyzed at different batch ages to better understand the formation of visible particles resulting from degradation of the surfactant polysorbate 20. The particle identity was determined by Raman spectroscopy as free fatty acid (FFA) and the particle composition over time was monitored by mass spectrometry. Further experimental work includes the counts and morphologies of subvisible particles by flow imaging microscopy. Finally, we evaluated the consequences of saline and human plasma exposure to the visible particles to better understand their fate upon dilution and/or administration which is routinely performed in the clinical setting. The experiments performed in this work can be used to support risk assessments of visible product-related particles.


Assuntos
Química Farmacêutica , Ácidos Graxos , Anticorpos Monoclonais , Humanos , Tamanho da Partícula , Polissorbatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA