Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2552: 283-294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36346598

RESUMO

Antibody and TCR modeling are becoming important as more and more sequence data becomes available to the public. One of the pressing questions now is how to use such data to understand adaptive immune responses to disease. Infectious disease is of particular interest because the antigens driving such responses are often known to some extent. Here, we describe tips for gathering data and cleaning it for use in downstream analysis. We present a method for high-throughput structural modeling of antibodies or TCRs using Repertoire Builder and its extensions. AbAdapt is an extension of Repertoire Builder for antibody-antigen docking from antibody and antigen sequences. ImmuneScape is a corresponding extension for TCR-pMHC 3D modeling. Together, these pipelines can help researchers to understand immune responses to infection from a structural point of view.


Assuntos
Antígenos , Receptores de Antígenos de Linfócitos T , Imunidade
2.
Biophys Rev ; 14(6): 1247-1253, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36536641

RESUMO

Structural genomics began as a global effort in the 1990s to determine the tertiary structures of all protein families as a response to large-scale genome sequencing projects. The immediate outcome was an influx of tens of thousands of protein structures, many of which had unknown functions. At the time, the value of structural genomics was controversial. However, the structures themselves were only the most obvious output. In addition, these newly solved structures motivated the emergence of huge data science and infrastructure efforts, which, together with advances in Deep Learning, have brought about a revolution in computational molecular biology. Here, we review some of the computational research carried out at the Protein Data Bank Japan (PDBj) during the Protein 3000 project under the leadership of Haruki Nakamura, much of which continues to flourish today.

3.
Comput Struct Biotechnol J ; 18: 2000-2011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802272

RESUMO

B cell receptors (BCRs) and T cell receptors (TCRs) make up an essential network of defense molecules that, collectively, can distinguish self from non-self and facilitate destruction of antigen-bearing cells such as pathogens or tumors. The analysis of BCR and TCR repertoires plays an important role in both basic immunology as well as in biotechnology. Because the repertoires are highly diverse, specialized software methods are needed to extract meaningful information from BCR and TCR sequence data. Here, we review recent developments in bioinformatics tools for analysis of BCR and TCR repertoires, with an emphasis on those that incorporate structural features. After describing the recent sequencing technologies for immune receptor repertoires, we survey structural modeling methods for BCR and TCRs, along with methods for clustering such models. We review downstream analyses, including BCR and TCR epitope prediction, antibody-antigen docking and TCR-peptide-MHC Modeling. We also briefly discuss molecular dynamics in this context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA