Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 83(14): 7453-7458, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29932340

RESUMO

A wild-type Baeyer-Villiger monooxygenase was engineered to overcome numerous liabilities in order to mediate a commercial oxidation of pyrmetazole to esomeprazole, using air as the terminal oxidant in an almost exclusively aqueous reaction matrix. The developed enzyme and process compares favorably to the incumbent Kagan inspired chemocatalytic oxidation, as esomeprazole was isolated in 87% yield, in >99% purity, with an enantiomeric excess of >99%.

2.
Science ; 376(6599): 1321-1327, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709255

RESUMO

The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.


Assuntos
Insulina , Penicilina Amidase , Peptídeos , Engenharia de Proteínas , Sequência de Aminoácidos , Humanos , Insulina/análogos & derivados , Insulina/biossíntese , Lisina/química , Penicilina Amidase/química , Penicilina Amidase/genética , Peptídeos/química , Peptídeos/genética , Engenharia de Proteínas/métodos
3.
Curr Opin Biotechnol ; 69: 182-190, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33517157

RESUMO

Multi-step, biocatalytic cascades are poised to lead to further adoption of enzymes by the chemical industry. Over the past twenty years, the promise of in vitro enzyme evolution for the sustainable biocatalytic synthesis of complex chemicals at large scale has materialized. Recently, the field of biocatalysis is seeing further expansion, with biocatalytic processes becoming more complex and involving multiple consecutive enzymatic conversions. These biocatalytic cascades are assembled in single reaction vessels to accomplish difficult chemistry under mild reaction conditions, with minimal waste generation and attractive economics. Advances in enzyme engineering have enabled the increasingly efficient optimization of enzymes in the context of such cascades, where each enzyme operates in the presence of others, under continuously changing conditions as substrate, reaction intermediates, and product concentrations fluctuate over the course of the reaction. Enzyme evolution has provided biocatalysts with greatly improved traits, including activity, selectivity, and stability. This review focuses on recently developed, industrially relevant enzyme cascades.


Assuntos
Indústria Química , Biocatálise
4.
Science ; 366(6470): 1255-1259, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806816

RESUMO

Enzyme-catalyzed reactions have begun to transform pharmaceutical manufacturing, offering levels of selectivity and tunability that can dramatically improve chemical synthesis. Combining enzymatic reactions into multistep biocatalytic cascades brings additional benefits. Cascades avoid the waste generated by purification of intermediates. They also allow reactions to be linked together to overcome an unfavorable equilibrium or avoid the accumulation of unstable or inhibitory intermediates. We report an in vitro biocatalytic cascade synthesis of the investigational HIV treatment islatravir. Five enzymes were engineered through directed evolution to act on non-natural substrates. These were combined with four auxiliary enzymes to construct islatravir from simple building blocks in a three-step biocatalytic cascade. The overall synthesis requires fewer than half the number of steps of the previously reported routes.


Assuntos
Biocatálise , Desoxiadenosinas/química , Inibidores da Transcriptase Reversa/química , Biotecnologia/métodos , Preparações Farmacêuticas/síntese química , Estereoisomerismo
5.
Protein Eng Des Sel ; 21(1): 29-35, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18093991

RESUMO

One of the main obstacles in employing P450 monooxygenases for preparative chemical syntheses in cell-free systems is their requirement for cofactors such as NAD(P)H. In order to engineer P450 BM3 from Bacillus megaterium for cost-effective process conditions in vitro, a validated medium throughput screening system based on cheap Zn dust as an electron source and Cobalt(III)sepulchrate (Co(III)sep) as a mediator was reported. In the current study, the alternative cofactor system Zn/Co(III)sep was used in a directed evolution experiment to improve the Co(III)sep-mediated electron transfer to P450 BM3. A variant, carrying five mutations (R47F F87A V281G M354S D363H, Table I), P450 BM3 M5 was identified and characterized with respect to its kinetic parameters. P450 BM3 M5 achieved for mediated electron transfer a 2-fold higher k(cat) value and a 3-fold higher catalytic efficiency compared with the starting point mutant P450 BM3 F87A (k(cat): 62 min(-1) compared with 28 min(-1); k(cat)/K(m): 62 microM(-1)min(-1) compared to 19 microM(-1)min(-1)). For obtaining first insights on electron transfer contributions, three reductase-deficient variants were generated. The reductase-deficient mutant of P450 BMP M5 exhibited a catalytic efficiency of 69% and a k(cat) value of 89% of the values obtained for P450 BM3 M5.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular Direcionada/métodos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação/genética , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Cobalto/química , Cobalto/metabolismo , Coenzimas/metabolismo , Sistema Enzimático do Citocromo P-450/química , Transporte de Elétrons , Cinética , Lauratos/metabolismo , Oxigenases de Função Mista/química , Mutagênese/genética , Mutagênese Sítio-Dirigida , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase , Reação em Cadeia da Polimerase , Zinco/metabolismo
6.
Chem Biol ; 21(3): 414-21, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24613019

RESUMO

Glucose oxidase (GOx) is used in many industrial processes that could benefit from improved versions of the enzyme. Some improvements like higher activity under physiological conditions and thermal stability could be useful for GOx applications in biosensors and biofuel cells. Directed evolution is one of the currently available methods to engineer improved GOx variants. Here, we describe an ultra-high-throughput screening system for sorting the best enzyme variants generated by directed evolution that incorporates several methodological refinements: flow cytometry, in vitro compartmentalization, yeast surface display, fluorescent labeling of the expressed enzyme, delivery of glucose substrate to the reaction mixture through the oil phase, and covalent labeling of the cells with fluorescein-tyramide. The method enables quantitative screening of gene libraries to identify clones with improved activity and it also allows cells to be selected based not only on the overall activity but also on the specific activity of the enzyme.


Assuntos
Evolução Molecular Direcionada , Proteínas Fúngicas/metabolismo , Glucose Oxidase/metabolismo , Sequência de Aminoácidos , Aspergillus niger/enzimologia , Citometria de Fluxo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Biblioteca Gênica , Glucose/metabolismo , Glucose Oxidase/química , Glucose Oxidase/genética , Meia-Vida , Ensaios de Triagem em Larga Escala , Peroxidase do Rábano Silvestre/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Saccharomyces cerevisiae/metabolismo , Temperatura
7.
Biotechnol J ; 2(2): 241-8, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17238237

RESUMO

A directed evolution protocol was developed for glucose oxidase (GOx) from Aspergillus niger that mimics applications conditions and employs a well-known mediator, oxidized ferrocenemethanol, in a medium throughput screen (96-well plate format). Upon reduction, oxidized ferrocenemethanol shows a color change from blue to pale yellow that can be recorded at 625 nm. Under optimized screening conditions, a CV of less than 20% was achieved in 96-well microtiter plates. For validating the screening system, two mutant libraries of GOx were generated by standard error-prone PCR conditions (0.04 mM MnCl(2)) and Saccharomyces cerevisiae was employed as host for secreted GOx expression. Two screening of approximately 2000 GOx mutants yielded a double mutant (T30S I94V) with improved pH and thermal resistance. Thermal resistance at a residual activity of 50% was increased from 58 degrees C (wild type, WT) to 62 degrees C (T30S I94V) and pH stability was improved at basic pH (pH 8-11). K(m) for glucose remained nearly unchanged (20.8 mM WT; 21.3 mM T30S I94V) and k(cat) increased (69.5/s WT; 137.7/s T30S I94V).


Assuntos
Aspergillus niger/enzimologia , Evolução Molecular Direcionada/métodos , Compostos Ferrosos/metabolismo , Proteínas Fúngicas/metabolismo , Glucose Oxidase/metabolismo , Aspergillus niger/genética , Transporte de Elétrons , Estabilidade Enzimática , Compostos Ferrosos/química , Proteínas Fúngicas/genética , Glucose/metabolismo , Glucose Oxidase/genética , Concentração de Íons de Hidrogênio , Mutação , Oxirredução , Reação em Cadeia da Polimerase , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Temperatura
8.
Chembiochem ; 7(4): 638-44, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16521141

RESUMO

Preparative synthesis with P450 monooxygenases is hampered in cell-free systems by the requirement for cofactors such as NAD(P)H as reduction equivalents. A validated medium-throughput screening system was designed for improving P450 monooxygenases by mediated electron transfer with zinc/cobalt(III)sepulchrate (Zn/Co(III)sep) as an alternative and cost-effective cofactor system. The monooxygenase P450 BM-3 F87A was used as a model system for developing the screening system in a 96-well format. A coefficient of variation of less than 10% was achieved under optimized screening conditions. The mediator evolution screen was validated by comparing the activity of P450 BM-3 to P450 BM-3 F87A and by screening a saturation mutagenesis library at amino acid position R47. For mediated electron transfer, two double mutants P450 BM-3(F87A R47F) and P450 BM-3 (F87A R47Y) were identified with a two-threefold increased catalytic efficiency (up to 32 microM(-1) min(-1) for P450 BM-3(F87A R47F) and 34 microM(-1) min(-1) for P450 BM-3 (F87A R47Y)) compared to P450 BM-3 F87A. The kinetic constants of the double mutants are, in contrast to those of P450 BM-3 F87A, dependent on Co(III)sep concentration in the presence of NADPH. kcat increases from 145 min(-1) (0.25 mM Co(III)sep) to 197 min(-1) (0.5 mM Co(III)sep), and Km decreases simultaneously from 7.0 microM to 3.7 microM, for P450 BM-3 (F87A R47F). For P450 BM-3 (F87A R47Y), kcat increases from 138 min(-1) (0.25 mM Co(III)sep) up to 187 min(-1) (0.5 mM Co(III)sep), and Km decreases from 8.2 microM to 4.2 microM. Due to lower Km values, the catalytic efficiencies were improved six times for P450 BM-3 (F87A R47F) and three times for P450 BM-3 (F87A R47Y), when comparing catalytic efficiencies of the mediated electron-transfer system to the natural reduction equivalent NADPH.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Evolução Molecular Direcionada/métodos , Oxigenases de Função Mista/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cobalto/química , Sistema Enzimático do Citocromo P-450/genética , Transporte de Elétrons , Desenho de Equipamento , Oxigenases de Função Mista/genética , NADP/química , NADPH-Ferri-Hemoproteína Redutase , Sensibilidade e Especificidade , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA