RESUMO
Schistosomiasis is an important parasitic disease that causes major host morbidity and mortality in endemic areas. Research conducted in mouse models of schistosomiasis has provided great insights and understanding of how host protective immunity is orchestrated and key cellular populations involved in this process. Earlier studies using cytokine-deficient mice demonstrated the importance of IL-4 and IL-10 in mediating host survival during acute schistosomiasis. Subsequent studies employing transgenic mice carrying cell-specific deletion of IL-4Rα generated using the Cre/LoxP recombination system have been instrumental in providing more in-depth understanding of the mechanisms conferring host resistance to Schistosoma mansoni infection. In this review, we will summarize the contributions of IL-4/IL-13-responsive cellular populations in host resistance during acute schistosomiasis and their role in limiting tissue pathology.
Assuntos
Receptores de Superfície Celular/metabolismo , Esquistossomose mansoni/imunologia , Animais , Regulação da Expressão Gênica/imunologia , Camundongos , Receptores de Superfície Celular/genética , Esquistossomose mansoni/parasitologiaRESUMO
AIM/PURPOSE: Fibroblast activation protein-(FAP)-ligands, a novel class of tracers for PET/CT imaging, demonstrated promising results in previous studies in various malignancies compared to standard [18F]FDG PET/CT. 68Ga-labeled fibroblast activation protein inhibitor-([68Ga]Ga-DOTA-FAPI)-PET/CT impresses with sharp contrasts in terms of high tumor uptake and low background noise leading to clear delineation. [18F]FDG PET/CT has limited accuracy in bladder cancer due to high background signal. Therefore, we sought to evaluate the diagnostic potential of [68Ga]FAPI in patients with bladder cancer. MATERIAL AND METHODS: This retrospective analysis consisted of 8 patients (median age 66), 7 of whom underwent both [68Ga]FAPI and [18F]FDG PET/CT scans with a median time interval of 5 days (range 1-20 days). Quantification of tracer uptake was determined with SUVmax and SUVmean. Furthermore, the tumor-to-background ratio (TBR) was derived by dividing the SUVmax of tumor lesions by the SUVmax of adipose tissue, skeletal muscle, and blood pool. RESULTS: Overall, 31 metastases were detected in five patients including lymph node metastases (n = 23), bone metastases (n = 4), lung metastases (n = 3), and a peritoneal metastasis (n = 1). In one patient, [68Ga]FAPI demonstrated significant uptake in the primary tumor located in the bladder wall. [68Ga]FAPI-PET/CT demonstrated significantly higher uptake compared to [18F]FDG PET/CT with higher mean SUVmax (8.2 vs. 4.6; p = 0.01). Furthermore, [68Ga]FAPI detected additional 30% (n = 9) lesions, missed by [18F]FDG. TBR demonstrated favorable uptake for [68Ga]FAPI in comparison to [18F]FDG. Significant differences were determined with regard to metastasis/blood pool ([68Ga]FAPI 5.3 vs [18F]FDG 1.9; p = 0.001). CONCLUSION: [68Ga]FAPI-PET/CT is a promising diagnostic radioligand for patients with bladder cancer. This first described analysis of FAP-ligand in bladder cancer revealed superiority over [18F]FDG in a small patient cohort. Thus, this so far assumed potential has to be confirmed and extended by larger and prospective studies.