Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Transplantation ; 92(5): 523-8, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21804441

RESUMO

BACKGROUND: Thymoglobulin is a T-cell-depleting polyclonal rabbit anti-human thymocyte antibody used clinically for immunosuppression in solid organ and hematopoietic stem-cell transplantation. By using a surrogate rabbit anti-mouse thymocyte globulin (mATG), we previously demonstrated that murine regulatory and memory T cells are preferentially spared from mATG depletion in vivo. The current studies were designed to determine whether different effector mechanisms are involved in differential depletion of T-cell subsets by mATG. METHODS: Complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity (ADCC), and apoptotic mechanisms of depletion by mATG were evaluated in vitro and in vivo. RESULTS: In vitro, there was evidence of differential susceptibility of T-cell subsets by different effector mechanisms where naïve and CD4 effector memory T cells show reduced susceptibility to apoptosis, whereas regulatory T cells are less susceptible to mATG-mediated complement-dependent cytotoxicity and ADCC. However, mATG treatment of mice depleted of ADCC effector cell types (neutrophils, natural killer cells, or macrophages) or deficient in complement C5 or Fas demonstrated that mATG depletion of all T-cell subsets is mediated primarily by macrophages and that the role of neutrophils, natural killer cells, and complement is minimal in vivo. Interestingly, the Fas/FasL pathway does play a role in regulatory T-cell depletion, which is likely a result of increased basal expression of Fas on these cells. CONCLUSIONS: These data suggest that macrophages deplete most T cells by mATG in mice, but regulatory T cells are also uniquely susceptible to mATG-mediated Fas-dependent depletion.


Assuntos
Soro Antilinfocitário/farmacologia , Proteína Ligante Fas/imunologia , Depleção Linfocítica , Linfócitos T/imunologia , Receptor fas/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Apoptose , Complemento C5/metabolismo , Citotoxicidade Imunológica , Humanos , Técnicas In Vitro , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Camundongos , Neutrófilos/imunologia , Coelhos , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/citologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia
2.
Transplantation ; 88(2): 170-9, 2009 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-19623011

RESUMO

BACKGROUND: Polyclonal rabbit anti-human thymocyte globulin (Thymoglobulin) is used clinically for immunosuppression in solid organ transplantation; however, it is difficult to fully characterize the effects of this agent in humans. METHODS: A surrogate rabbit anti-murine thymocyte globulin (mATG) was generated analogously to the commercial product Thymoglobulin and in vivo activities were evaluated, including pharmacokinetics, T-cell depletion, dose response and kinetics, depletion/sparing of T-cell subsets or other leukocyte populations, and depletion in different lymphoid organs. RESULTS: Within 1 day, T cells are depleted by mATG in the blood, spleen, lymph node, and bone marrow down to doses of 1 mg/kg. Although mATG binds and depletes thymocytes in vitro, there is no thymocyte depletion in vivo at any dose level, suggesting decreased antibody accessibility to the thymus. After two doses of mATG given 3 days apart, T-cell reconstitution begins as early as day 9 and returns to basal levels by day 21 and 29 for CD4 and CD8 T cells, respectively. There is also preferential depletion of naïve T cells that results in increased ratios of regulatory and memory T cells within 1 day after mATG administration. Depletion of natural killer-T cells, natural killer cells, plasma cells, and plasmablasts occurs, but is modest and more transient compared with T cells. B cells, macrophages, dendritic cells, hematopoetic stem cells, and bone marrow stromal cells seem resistant to mATG depletion. CONCLUSIONS: These studies characterize the depletive effects of mATG in normal mice and provide insight into mechanisms of action of Thymoglobulin.


Assuntos
Soro Antilinfocitário/uso terapêutico , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Terapia de Imunossupressão/métodos , Células Matadoras Naturais/imunologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL/imunologia , Camundongos Endogâmicos , Coelhos , Subpopulações de Linfócitos T/imunologia
3.
Biochem Pharmacol ; 78(8): 993-1000, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19540208

RESUMO

CXCR4 is widely expressed in multiple cell types, and is involved in neonatal development, hematopoiesis, and lymphocyte trafficking and homing. Disruption of the CXCL12/CXCR4 interaction has been implicated in stem cell mobilization. Additionally CXCR4 is a co-receptor for HIV. Selective small molecule antagonists of CXCR4 therefore have therapeutic potential. AMD3465 is an N-pyridinylmethylene monocyclam CXCR4 antagonist which can block infection of T-tropic, CXCR4-using HIV. Using the CCRF-CEM T-cell line which expresses CXCR4 we have demonstrated that AMD3465 is an antagonist of SDF-1 ligand binding (K(i) of 41.7+/-1.2nM), and inhibits SDF-1 mediated signaling as shown by inhibition of GTP binding, calcium flux, and inhibition of chemotaxis. AMD3465 is selective for CXCR4 and does not inhibit chemokine-stimulated calcium flux in cells expressing CXCR3, CCR1, CCR2b, CCR4, CCR5 or CCR7, nor does it inhibit binding of LTB(4) to its receptor, BLT1. The pharmacokinetics of AMD3465 was investigated in mice and dogs. Absorption was rapid following subcutaneous administration. AMD3465 was cleared from dog plasma in a biphasic manner with a terminal half-life of 1.56-4.63h. Comparison of exposure to the intravenous and subcutaneous doses indicated 100% bioavailability following subcutaneous administration. AMD3465 caused leukocytosis when administered subcutaneously in mice and dogs, with peak mobilization occurring between 0.5 and 1.5h following subcutaneous dosing in mice and with maximum peak plasma concentration of compound preceding peak mobilization in dogs, indicating that AMD3465 has the potential to mobilize hematopoietic stem cells. These data demonstrate the therapeutic potential for the CXCR4 antagonist AMD3465.


Assuntos
Compostos Heterocíclicos/farmacologia , Piridinas/farmacologia , Piridinas/farmacocinética , Receptores CXCR4/antagonistas & inibidores , Absorção , Animais , Área Sob a Curva , Células CHO , Cálcio/análise , Cálcio/metabolismo , Linhagem Celular , Quimiocina CXCL12/antagonistas & inibidores , Quimiotaxia/efeitos dos fármacos , Cricetinae , Cricetulus , Cães , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Meia-Vida , Humanos , Concentração Inibidora 50 , Rim/citologia , Leucocitose/etiologia , Masculino , Dose Máxima Tolerável , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Estrutura Molecular , Ligação Proteica , Piridinas/efeitos adversos , Piridinas/sangue , Piridinas/química , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA