Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 28(19): 3199-3210, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211843

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by deletions or mutations in survival motor neuron 1 (SMN1). The molecular mechanisms underlying motor neuron degeneration in SMA remain elusive, as global cellular dysfunction obscures the identification and characterization of disease-relevant pathways and potential therapeutic targets. Recent reports have implicated microRNA (miRNA) dysregulation as a potential contributor to the pathological mechanism in SMA. To characterize miRNAs that are differentially regulated in SMA, we profiled miRNA levels in SMA induced pluripotent stem cell (iPSC)-derived motor neurons. From this array, miR-23a downregulation was identified selectively in SMA motor neurons, consistent with previous reports where miR-23a functioned in neuroprotective and muscle atrophy-antagonizing roles. Reintroduction of miR-23a expression in SMA patient iPSC-derived motor neurons protected against degeneration, suggesting a potential miR-23a-specific disease-modifying effect. To assess this activity in vivo, miR-23a was expressed using a self-complementary adeno-associated virus serotype 9 (scAAV9) viral vector in the Smn2B/- SMA mouse model. scAAV9-miR-23a significantly reduced the pathology in SMA mice, including increased motor neuron size, reduced neuromuscular junction pathology, increased muscle fiber area, and extended survival. These experiments demonstrate that miR-23a is a novel protective modifier of SMA, warranting further characterization of miRNA dysfunction in SMA.


Assuntos
Vetores Genéticos/administração & dosagem , MicroRNAs/genética , Atrofia Muscular Espinal/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , MicroRNAs/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Índice de Gravidade de Doença , Proteína 2 de Sobrevivência do Neurônio Motor/genética
2.
MAbs ; 15(1): 2261509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37823690

RESUMO

There are few treatments that slow neurodegeneration in Alzheimer's disease (AD), and while therapeutic antibodies are being investigated in clinical trials for AD treatment, their access to the central nervous system is restricted by the blood-brain barrier. This study investigates a bispecific modular fusion protein composed of gantenerumab, a fully human monoclonal anti- amyloid-beta (Aß) antibody under investigation for AD treatment, with a human transferrin receptor 1-directed Brainshuttle™ module (trontinemab; RG6102, INN trontinemab). In vitro, trontinemab showed a similar binding affinity to fibrillar Aß40 and Aß plaques in human AD brain sections to gantenerumab. A single intravenous administration of trontinemab (10 mg/kg) or gantenerumab (20 mg/kg) to non-human primates (NHPs, Macaca fascicularis), was well tolerated in both groups. Immunohistochemistry indicated increased trontinemab uptake into the brain endothelial cell layer and parenchyma, and more homogeneous distribution, compared with gantenerumab. Brain and plasma pharmacokinetic (PK) parameters for trontinemab were estimated by nonlinear mixed-effects modeling with correction for tissue residual blood, indicating a 4-18-fold increase in brain exposure. A previously developed clinical PK/pharmacodynamic model of gantenerumab was adapted to include a brain compartment as a driver of plaque removal and linked to the allometrically scaled above model from NHP. The new brain exposure-based model was used to predict trontinemab dosing regimens for effective amyloid reduction. Simulations from these models were used to inform dosing of trontinemab in the first-in-human clinical trial.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/uso terapêutico , Anticorpos Monoclonais/farmacologia , Encéfalo/metabolismo , Primatas/metabolismo
3.
Xenobiotica ; 41(8): 701-11, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21521079

RESUMO

The bile duct-cannulated (BDC) rat is a standard animal model used in ADME experiments. The aim of this study was to investigate post-surgical alterations that are relevant to ADME investigations in BDC rats compared with sham- and non-operated animals. Water and food intake was reduced in the animals' post-surgery. This led to a lower body weight in operated animals. In BDC animals, aspartate aminotransferase (AST) levels in plasma were transiently elevated and total bile acid levels were reduced. Alpha(1)-acid glycoprotein (AGP) in plasma and the concentration of bile components in bile were elevated. Histopathology showed inflammation in the area of the cannulation between the liver and the small intestine. A microarray-based gene expression and RTq-PCR analysis identified altered expression for several genes involved in drug disposition including the down-regulation of cytochrome P450 enzymes. This led to reduced cytochrome P450 content in the liver and lower metabolic activity in microsomes from BDC and sham-operated rats compared with naïve animals. The results of the study suggest that the post-surgical inflammation leads to physiological changes relevant for drug absorption and disposition. These alterations should be accounted for in the interpretation of ADME studies in BDC animals.


Assuntos
Ductos Biliares/cirurgia , Farmacocinética , Animais , Aspartato Aminotransferases/sangue , Bile/metabolismo , Cateterismo , Sistema Enzimático do Citocromo P-450/metabolismo , Masculino , Modelos Animais , Análise Serial de Proteínas , Ratos , Ratos Wistar
4.
Toxicol Sci ; 163(2): 409-419, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28329870

RESUMO

A number of drugs can cause precipitates within renal tubules leading to crystal nephropathy. Crystal nephropathy is usually an exposure-related finding and is not uncommon in preclinical studies, where high doses are tested. An understanding of the nature of precipitates is important for human risk assessment and further development. Our aim was to investigate the ability of various imaging techniques to detect the presence of drugs or metabolites in renal crystals. We applied matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) imaging, Raman and infrared microspectroscopy, scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) spectroscopy and standard histopathology to cases of drug-induced crystal nephropathy, induced in rodents and primates by 4 compounds. MALDI-FTICR MS imaging enabled the identification of the drug-related crystal content in all 4 cases of nephropathy, without reference material and with high accuracy. Crystals were composed of unchanged parent drug and/or metabolites. Similar results were obtained using Raman and infrared microspectroscopy for 2 compounds. In the absence of reference standards of metabolites, Raman and infrared microspectroscopy showed that the crystals consisted of components similar, but not identical, to the administered drug for the other compounds, a limitation for these techniques. SEM/EDX showed which counter ions were colocalized with the identified drug-related material, complementing the MALDI-FTICR MS findings. Therefore, we recommend MALDI-FTICR MS as a first-line methodology to characterize crystal nephropathies. Raman and infrared microspectroscopy may be useful when MALDI-FTICR MS imaging cannot be applied. SEM/EDX could be considered as a complementary technology.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico por imagem , Rim/efeitos dos fármacos , Preparações Farmacêuticas/química , Animais , Cristalização , Avaliação Pré-Clínica de Medicamentos , Rim/diagnóstico por imagem , Macaca fascicularis , Camundongos , Estrutura Molecular , Preparações Farmacêuticas/análise , Ratos , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Infravermelho , Análise Espectral Raman
5.
Gait Posture ; 45: 51-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26979883

RESUMO

Reactive balance recovery strategies following an unexpected loss of balance are crucial to the prevention of falls, head trauma and other major injuries in older adults. While a longstanding focus has been on understanding lower limb recovery responses, the upper limbs also play a critical role. However, when a fall occurs, little is known about the role of memory and attention shifting on the reach to grasp recovery strategy and what factors determine the speed and precision of this response beyond simple reaction time. The objective of this study was to compare response time and accuracy of a stabilizing grasp following a balance perturbation in older adult fallers compared to non-fallers and younger adults while loading the processing demands of non-spatial, verbal working memory. Working memory was engaged with a progressively challenging verb-generation task that was interrupted by an unexpected sideways platform perturbation and a pre-instructed reach to grasp response. Results revealed that the older adults, particularly those at high fall risk, demonstrated significantly increased movement time to handrail contact and grasping errors during conditions in which non-spatial memory was actively engaged. These findings provide preliminary evidence of the cognitive deficit in attention shifting away from an ongoing working memory task that underlies delayed and inaccurate protective reach to grasp responses in older adult fallers.


Assuntos
Acidentes por Quedas/prevenção & controle , Envelhecimento/fisiologia , Atenção/fisiologia , Força da Mão/fisiologia , Memória de Curto Prazo/fisiologia , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA