Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
NPJ Microgravity ; 10(1): 46, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600142

RESUMO

A potential contribution to the progression of Spaceflight Associated Neuro-ocular Syndrome is the thoracic-to-spinal dural sac transmural pressure relationship. In this study, we utilize a lumped-parameter computational model of human cerebrospinal fluid (CSF) systems to investigate mechanisms of CSF redistribution. We present two analyses to illustrate potential mechanisms for CSF pressure alterations similar to those observed in microgravity conditions. Our numerical evidence suggests that the compliant relationship between thoracic and CSF compartments is insufficient to solely explain the observed decrease in CSF pressure with respect to the supine position. Our analyses suggest that the interaction between thoracic pressure and the cardiovascular system, particularly the central veins, has greater influence on CSF pressure. These results indicate that future studies should focus on the holistic system, with the impact of cardiovascular changes to the CSF pressure emphasized over the sequestration of fluid in the spine.

2.
Nat Commun ; 15(1): 2634, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528030

RESUMO

Real-time lab analysis is needed to support clinical decision making and research on human missions to the Moon and Mars. Powerful laboratory instruments, such as flow cytometers, are generally too cumbersome for spaceflight. Here, we show that scant test samples can be measured in microgravity, by a trained astronaut, using a miniature cytometry-based analyzer, the rHEALTH ONE, modified specifically for spaceflight. The base device addresses critical spaceflight requirements including minimal resource utilization and alignment-free optics for surviving rocket launch. To fully enable reduced gravity operation onboard the space station, we incorporated bubble-free fluidics, electromagnetic shielding, and gravity-independent sample introduction. We show microvolume flow cytometry from 10 µL sample drops, with data from five simultaneous channels using 10 µs bin intervals during each sample run, yielding an average of 72 million raw data points in approximately 2 min. We demonstrate the device measures each test sample repeatably, including correct identification of a sample that degraded in transit to the International Space Station. This approach can be utilized to further our understanding of spaceflight biology and provide immediate, actionable diagnostic information for management of astronaut health without the need for Earth-dependent analysis.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Citometria de Fluxo , Lua
3.
PLoS One ; 15(2): e0226915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027692

RESUMO

Many experiments have documented the response of intraocular pressure (IOP) to postural change. External forces caused by gravitational orientation change produce a dynamic response that is encountered every day during normal activities. Tilting the body at a small downward angle is also relevant to studying the effects of hypogravity (spaceflight), including ocular changes. We examined data from 36 independent datasets from 30 articles on IOP response to postural change, representing a total population of 821 subjects (≥1173 eyes) with widely varying initial and final postures. We confirmed that IOP was well predicted by a simple quantity, namely the hydrostatic pressure at the level of the eye, although the dependence was complex (nonlinear). Our results show that posturally induced IOP change can be explained by hydrostatic forcing plus an autoregulatory contribution that is dependent on hydrostatic effects. This study represents data from thousands of IOP measurements and provides insight for future studies that consider postural change in relation to ocular physiology, intraocular pressure, ocular blood flow and aqueous humor dynamics.


Assuntos
Pressão Intraocular/fisiologia , Postura/fisiologia , Adolescente , Adulto , Idoso , Humor Aquoso/fisiologia , Pressão Sanguínea/fisiologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Invest Ophthalmol Vis Sci ; 59(10): 4172-4181, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120486

RESUMO

Purpose: Choroid geometry and swelling have been proposed to contribute to ocular pathologies. Thus, it is important to understand how the choroid may impact the optic nerve head (ONH) biomechanical environment. We developed a finite element model to study how acute choroidal swelling and choroid geometry affect ONH deformation. Methods: We developed two geometric models of the ONH: one with a "blunt" choroidal insertion and another with a "tapered" choroid insertion. We examined how choroidal volume changes (2.1-14.2 µL, estimated to occur during the ocular pulse) impact biomechanical strain in three tissue regions: the prelaminar neural tissue, lamina cribrosa, and retrolaminar neural tissue. Then, we performed a sensitivity analysis to understand how variation in ONH pressures, tissue material properties, and choroidal swelling influenced the peak tissue strains. Results: Choroidal swelling in the blunt choroid geometry had a large impact on the strains in the prelaminar neural tissue, with magnitudes comparable to those expected to occur due to an IOP of 30 mm Hg. Choroidal swelling in the tapered choroid geometry also affected strains but to a lesser extent compared to the blunt geometry. A sensitivity analysis confirmed that choroidal swelling was more influential on prelaminar neural tissue strains in the blunt choroid geometry. Conclusions: Choroid anatomy and swelling can interact to play an important role in prelaminar neural tissue deformation. These findings suggest that the choroid may play an important, and previously unappreciated, role in ONH biomechanics, and motivate additional research to better define the in vivo effects of choroidal volume change.


Assuntos
Corioide/patologia , Disco Óptico/fisiologia , Doenças do Nervo Óptico/fisiopatologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Pressão Intraocular/fisiologia , Modelos Biológicos
5.
J Appl Physiol (1985) ; 123(2): 352-363, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495842

RESUMO

Exposure to microgravity causes a bulk fluid shift toward the head, with concomitant changes in blood volume/pressure, and intraocular pressure (IOP). These and other factors, such as intracranial pressure (ICP) changes, are suspected to be involved in the degradation of visual function and ocular anatomical changes exhibited by some astronauts. This is a significant health concern. Here, we describe a lumped-parameter numerical model to simulate volume/pressure alterations in the eye during gravitational changes. The model includes the effects of blood and aqueous humor dynamics, ICP, and IOP-dependent ocular compliance. It is formulated as a series of coupled differential equations and was validated against four existing data sets on parabolic flight, body inversion, and head-down tilt (HDT). The model accurately predicted acute IOP changes in parabolic flight and HDT, and was satisfactory for the more extreme case of inversion. The short-term response to the changing gravitational field was dominated by ocular blood pressures and compliance, while longer-term responses were more dependent on aqueous humor dynamics. ICP had a negligible effect on acute IOP changes. This relatively simple numerical model shows promising predictive capability. To extend the model to more chronic conditions, additional data on longer-term autoregulation of blood and aqueous humor dynamics are needed.NEW & NOTEWORTHY A significant percentage of astronauts present anatomical changes in the posterior eye tissues after spaceflight. Hypothesized increases in ocular blood volume and intracranial pressure (ICP) in space have been considered to be likely factors. In this work, we provide a novel numerical model of the eye that incorporates ocular hemodynamics, gravitational forces, and ICP changes. We find that changes in ocular hemodynamics govern the response of intraocular pressure during acute gravitational change.


Assuntos
Hemodinâmica/fisiologia , Pressão Intracraniana/fisiologia , Pressão Intraocular/fisiologia , Adulto , Astronautas , Pressão Sanguínea/fisiologia , Volume Sanguíneo/fisiologia , Olho/fisiopatologia , Cabeça/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Humanos , Masculino , Postura/fisiologia , Voo Espacial/métodos , Ausência de Peso
6.
Biomech Model Mechanobiol ; 16(1): 33-43, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27236645

RESUMO

Visual impairment and intracranial pressure (VIIP) syndrome is characterized by a number of permanent ophthalmic changes, including loss of visual function. It occurs in some astronauts during long-duration spaceflight missions. Thus, understanding the pathophysiology of VIIP is currently a major priority in space medicine research. It is hypothesized that maladaptive remodeling of the optic nerve sheath (ONS), in response to microgravity-induced elevations in intracranial pressure (ICP), contributes to VIIP. However, little is known about ONS biomechanics. In this study, we developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the porcine ONS during inflation and axial loading. Data were fit to a four-fiber family constitutive equation to extract material and structural parameters. Inflation testing showed a characteristic "cross-over point" in the pressure-diameter curves under different axial loads in all samples that were tested; the cross-over pressure was [Formula: see text] mmHg ([Formula: see text]). Large sample-to-sample variations were observed in the circumferential strain, while only modest variations were observed in the circumferential stress. Multiphoton microscopy revealed that the collagen fibers of the ONS were primarily oriented axially when the tissue was loaded. The existence of this cross-over behavior is expected to be neuroprotective, as it would avoid optic nerve compression during routine changes in gaze angle, so long as ICP was within the normal range. Including these observations into computational models of VIIP will help provide insight into the pathophysiology of VIIP and could help identify risk factors and potential interventions.


Assuntos
Fenômenos Biomecânicos , Pressão Intracraniana/fisiologia , Nervo Óptico/fisiologia , Voo Espacial , Animais , Humanos , Modelos Biológicos , Suínos
7.
Invest Ophthalmol Vis Sci ; 57(4): 1901-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27088762

RESUMO

PURPOSE: Visual impairment and intracranial pressure (VIIP) syndrome is a health concern for long-duration spaceflight, and a proposed risk factor is elevation of intracranial pressure (ICP). Our goal was to use finite element modeling to simulate how elevated ICP and interindividual differences affect tissue deformation within the optic nerve head (ONH). METHODS: We considered three ICP conditions: the upright and supine position on earth and an elevated ICP assumed to occur in chronic microgravity. Within each condition we used Latin hypercube sampling to consider a range of pressures and ONH tissue mechanical properties, determining the influence of each input on the following outcome measures: peak strains in the prelaminar tissue, lamina cribrosa, and retrolaminar optic nerve. Elevated strains can alter cell phenotype and induce tissue remodeling. RESULTS: Elevating ICP increased the strains in the retrolaminar optic nerve. Variations in IOP, ICP, and in optic nerve and lamina cribrosa stiffness had the strongest influence on strains within the ONH. We predicted that 5% to 47% of individuals in microgravity would experience peak strains in the retrolaminar optic nerve larger than expected on earth. Having a soft optic nerve or pia mater and elevated ICP were identified as risk factors for these "extreme" strains. CONCLUSIONS: Intracranial pressure and mechanical properties of the ONH influence the risk for experiencing extreme strains in the retrolaminar optic nerve. These extreme strains may activate mechanosensitive cells that induce tissue remodeling and are a risk factor for the development of VIIP. Future studies must also consider variations in ONH anatomy.


Assuntos
Análise de Elementos Finitos , Glaucoma/patologia , Hipertensão Intracraniana/patologia , Pressão Intracraniana/fisiologia , Disco Óptico/patologia , Doenças do Nervo Óptico/patologia , Progressão da Doença , Glaucoma/complicações , Glaucoma/fisiopatologia , Humanos , Hipertensão Intracraniana/complicações , Hipertensão Intracraniana/fisiopatologia , Pressão Intraocular/fisiologia , Doenças do Nervo Óptico/etiologia , Doenças do Nervo Óptico/fisiopatologia , Reprodutibilidade dos Testes , Síndrome
8.
Life (Basel) ; 4(4): 621-65, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25387162

RESUMO

Although changes to visual acuity in spaceflight have been observed in some astronauts since the early days of the space program, the impact to the crew was considered minor. Since that time, missions to the International Space Station have extended the typical duration of time spent in microgravity from a few days or weeks to many months. This has been accompanied by the emergence of a variety of ophthalmic pathologies in a significant proportion of long-duration crewmembers, including globe flattening, choroidal folding, optic disc edema, and optic nerve kinking, among others. The clinical findings of affected astronauts are reminiscent of terrestrial pathologies such as idiopathic intracranial hypertension that are characterized by high intracranial pressure. As a result, NASA has placed an emphasis on determining the relevant factors and their interactions that are responsible for detrimental ophthalmic response to space. This article will describe the Visual Impairment and Intracranial Pressure syndrome, link it to key factors in physiological adaptation to the microgravity environment, particularly a cephalad shifting of bodily fluids, and discuss the implications for ocular biomechanics and physiological function in long-duration spaceflight.

9.
J Vis Exp ; (93): e51743, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25490614

RESUMO

Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.


Assuntos
Medicina Aeroespacial/instrumentação , Análise Química do Sangue/instrumentação , Citometria de Fluxo/instrumentação , Microfluídica/instrumentação , Simulação de Ausência de Peso/instrumentação , Medicina Aeroespacial/métodos , Análise Química do Sangue/métodos , Citometria de Fluxo/métodos , Humanos , Hipogravidade , Microfluídica/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Voo Espacial , Simulação de Ausência de Peso/métodos
10.
Ann Biomed Eng ; 37(11): 2337-59, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19707874

RESUMO

There are still many unknowns in the physiological response of human beings to space, but compelling evidence indicates that accelerated bone loss will be a consequence of long-duration spaceflight. Lacking phenomenological data on fracture risk in space, we have developed a predictive tool based on biomechanical and bone loading models at any gravitational level of interest. The tool is a statistical model that forecasts fracture risk, bounds the associated uncertainties, and performs sensitivity analysis. In this paper, we focused on events that represent severe consequences for an exploration mission, specifically that of spinal fracture resulting from a routine task (lifting a heavy object up to 60 kg), or a spinal, femoral or wrist fracture due to an accidental fall or an intentional jump from 1 to 2 m. We validated the biomechanical and bone fracture models against terrestrial studies of ground reaction forces, skeletal loading, fracture risk, and fracture incidence. Finally, we predicted fracture risk associated with reference missions to the moon and Mars that represented crew activities on the surface. Fracture was much more likely on Mars due to compromised bone integrity. No statistically significant gender-dependent differences emerged. Wrist fracture was the most likely type of fracture, followed by spinal and hip fracture.


Assuntos
Astronautas , Fraturas Ósseas/etiologia , Fraturas Ósseas/fisiopatologia , Fraturas Espontâneas/etiologia , Fraturas Espontâneas/fisiopatologia , Modelos Biológicos , Voo Espacial , Ausência de Peso/efeitos adversos , Densidade Óssea , Simulação por Computador , Módulo de Elasticidade , Humanos , Medição de Risco , Fatores de Risco
11.
J Gravit Physiol ; 11(1): 1-10, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16145793

RESUMO

Experiments are sent to space laboratories in order to take advantage of the low-gravity environment. However, it is crucial to appreciate the distinction between the real microgravity environment and "weightlessness" or "simulated microgravity". The microgravity in space laboratories may be of much smaller magnitude than the gravitational acceleration on earth. However, it is not zero, nor even one microg (defined as 1e-6 earth gravity). Moreover, the orientation is not uniaxial, as on earth. The net acceleration that acts on a space experiment arises from, e.g., orbital mechanics, atmospheric drag, and thruster firings, and it can act on the experiments in gravity-like ways. In essence, a well-defined, stable 1 g acceleration on the earth's surface is substituted for a complex array of dynamically changing accelerations with ever-changing frequency content, magnitude and direction. This paper will show measured accelerations on the Shuttle from launch to orbit, as well as the latest measurements on the International Space Station (ISS). The ISS data presented here represent over 34,790 hours of data obtained from June 2002 to April 2003 during Increments 5 and 6 of the ISS construction cycle. The quasisteady acceleration level on the ISS has been measured to be on the order of a few microg during time allotted to microgravity mode. The vibratory acceleration environment spans a rich spectrum from 0.01-300 Hz.


Assuntos
Aceleração , Voo Espacial/instrumentação , Voo Espacial/estatística & dados numéricos , Astronave/instrumentação , Vibração , Ausência de Peso , Coleta de Dados/métodos , Ambiente Controlado , Gravidade Alterada , Laboratórios
12.
J Gravit Physiol ; 11(1): 17-27, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16145796

RESUMO

Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.


Assuntos
Reatores Biológicos , Células Cultivadas/fisiologia , Técnicas Microbiológicas/métodos , Voo Espacial , Ausência de Peso , Fenômenos Biofísicos , Biofísica , Centrifugação , Gravitação , Gravidade Alterada , Técnicas In Vitro , Técnicas Microbiológicas/instrumentação , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA