Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
PLoS Pathog ; 19(6): e1011185, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289831

RESUMO

Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquitinating complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated in infection and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Replicação Viral/genética , Proteases Específicas de Ubiquitina/genética , Transdução de Sinais , Latência Viral/genética , Fator de Transcrição STAT1/genética
2.
J Therm Biol ; 121: 103863, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38723312

RESUMO

Climate change is predicted to change not only the temperature of many freshwater systems but also flow dynamics. Understanding how fishes will fare in the future requires knowing how they will respond to both extended variations of temperature and flow. Arctic charr have had their thermal tolerance measured, but never with respect to flow. Additionally, this circumpolar species has multiple populations exhibiting dramatic phenotypic plasticity which may mean that regional differences in thermal tolerance are unaccounted for. In Iceland, Arctic charr populations have experienced highly variable flow and temperature conditions over the past 10,000 years. The Icelandic climate, topography and geothermal activity have created a mosaic of freshwater habitats inhabited by charr that vary substantially in both temperature and flow. Our purpose was to test whether populations from these varied environments had altered thermal tolerance and whether phenotypic plasticity of thermal tolerance in charr depends on flow. We raised cultured Icelandic charr from hatch under a 2 X 2 matrix of flow and temperature and compared them to wild charr captured from matching flow and temperature environments. Wild fish were more thermally tolerant than cultured fish at both acclimation temperatures and were more thermally plastic. Icelandic Arctic charr were more thermally tolerant than comparison charr populations across Europe and North America, but only when acclimated to 13 °C; fish acclimated to 5 °C compared equably with comparison charr populations. Icelandic Arctic charr were also more thermally plastic than all but one other salmonine species. Neither flow of rearing or the flow selected during a thermal tolerance (CTmax) test factored into thermal tolerance. Thermal tolerance was also independent of body size, condition factor, heart and gill size. In summary, wild Icelandic Arctic charr have greater thermal tolerance and plasticity than predicted from the literature and their latitude, but artificial selection for properties like growth rate or fecundity may be breeding that increased tolerance out of cultured fish. As the world moves toward a warmer climate and increased dependence on cultured fish, this is a noteworthy result and merits further study.


Assuntos
Termotolerância , Truta , Animais , Truta/fisiologia , Islândia , Aclimatação , Temperatura
4.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177198

RESUMO

In human cytomegalovirus (HCMV)-seropositive patients, CD34+ hematopoietic progenitor cells (HPCs) provide an important source of latent virus that reactivates following cellular differentiation into tissue macrophages. Multiple groups have used primary CD34+ HPCs to investigate mechanisms of viral latency. However, analyses of mechanisms of HCMV latency have been hampered by the genetic variability of CD34+ HPCs from different donors, availability of cells, and low frequency of reactivation. In addition, multiple progenitor cell types express surface CD34, and the frequencies of these populations differ depending on the tissue source of the cells and culture conditions in vitro In this study, we generated CD34+ progenitor cells from two different embryonic stem cell (ESC) lines, WA01 and WA09, to circumvent limitations associated with primary CD34+ HPCs. HCMV infection of CD34+ HPCs derived from either WA01 or WA09 ESCs supported HCMV latency and induced myelosuppression similar to infection of primary CD34+ HPCs. Analysis of HCMV-infected primary or ESC-derived CD34+ HPC subpopulations indicated that HCMV was able to establish latency and reactivate in CD38+ CD90+ and CD38+/low CD90- HPCs but persistently infected CD38- CD90+ cells to produce infectious virus. These results indicate that ESC-derived CD34+ HPCs can be used as a model for HCMV latency and that the virus either latently or persistently infects specific subpopulations of CD34+ cells.IMPORTANCE Human cytomegalovirus infection is associated with severe disease in transplant patients and understanding how latency and reactivation occur in stem cell populations is essential to understand disease. CD34+ hematopoietic progenitor cells (HPCs) are a critical viral reservoir; however, these cells are a heterogeneous pool with donor-to-donor variation in functional, genetic, and phenotypic characteristics. We generated a novel system using embryonic stem cell lines to model HCMV latency and reactivation in HPCs with a consistent cellular background. Our study defined three key stem cell subsets with differentially regulated latent and replicative states, which provide cellular candidates for isolation and treatment of transplant-mediated disease. This work provides a direction toward developing strategies to control the switch between latency and reactivation.


Assuntos
Antígenos CD34/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/isolamento & purificação , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Células-Tronco Embrionárias Humanas/virologia , Ativação Viral , Latência Viral , Células Cultivadas , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Transdução de Sinais
5.
PLoS Pathog ; 15(11): e1007854, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725809

RESUMO

Reactivation of latent Human Cytomegalovirus (HCMV) in CD34+ hematopoietic progenitor cells (HPCs) is closely linked to hematopoiesis. Viral latency requires maintenance of the progenitor cell quiescence, while reactivation initiates following mobilization of HPCs to the periphery and differentiation into CD14+ macrophages. Early growth response gene 1 (EGR-1) is a transcription factor activated by Epidermal growth factor receptor (EGFR) signaling that is essential for the maintenance of CD34+ HPC self-renewal in the bone marrow niche. Down-regulation of EGR-1 results in mobilization and differentiation of CD34+ HPC from the bone marrow to the periphery. In the current study we demonstrate that the transcription factor EGR-1 is directly targeted for down-regulation by HCMV miR-US22 that results in decreased proliferation of CD34+ HPCs and a decrease in total hematopoietic colony formation. We also show that an HCMV miR-US22 mutant fails to reactivate in CD34+ HPCs, indicating that expression of EGR-1 inhibits viral reactivation. Since EGR-1 promotes CD34+ HPC self-renewal in the bone marrow niche, HCMV miR-US22 down-regulation of EGR-1 is a necessary step to block HPC self-renewal and proliferation to induce a cellular differentiation pathway necessary to promote reactivation of virus.


Assuntos
Proliferação de Células , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células-Tronco Hematopoéticas/citologia , MicroRNAs/genética , Ativação Viral , Diferenciação Celular , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Hematopoese , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Humanos , Transdução de Sinais
6.
PLoS Pathog ; 15(11): e1008037, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725811

RESUMO

Sustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of alpha and beta herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. How signaling downstream of EGFR is regulated and how this impacts CMV infection and latency is not fully understood. We demonstrate that CMV downregulates EGFR early in the productive infection, which blunts the activation of EGFR and its downstream pathways in response to stimuli. However, CMV infection sustains basal levels of EGFR and downstream pathway activity in the context of latency in CD34+ hematopoietic progenitor cells (HPCs). Inhibition of MEK/ERK, STAT or PI3K/AKT pathways downstream of EGFR increases viral reactivation from latently infected CD34+ HPCs, defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription important to latency. Indeed, EGF-stimulation increased expression of the UL138 latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through the MEK/ERK pathway and is important for the maintenance of hematopoietic stemness. We demonstrate that EGR1 binds the viral genome upstream of UL138 and is sufficient to promote UL138 expression. Further, disruption of EGR1 binding upstream of UL138 prevents the establishment of latency in CD34+ HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 gene expression and suppression of replication for latency. By this mechanism, the virus has hardwired itself into host cell biology to sense and respond to changes in homeostatic host cell signaling.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Replicação Viral , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Genoma Viral , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/virologia , Humanos , Proteínas Virais/genética , Latência Viral
7.
J Therm Biol ; 100: 103047, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503794

RESUMO

Urbanization changes the thermal profile of streams in much the same way that climate change is predicted to with higher temperatures, more varied flow and rapid temperature pulses with precipitation events. Whether exceptional tolerance to these altered thermal conditions is a pre-requisite for a fish species to inhabit urban streams or if urbanization has changed the thermal physiology of those fish species that persist in urban streams is unknown, but could help predict the outcome of future climate disruption. To test whether residence in urban streams is associated with altered thermal tolerance, we compared thermal tolerance (CTMax) and phenotypic plasticity of thermal tolerance (ΔCTMax/Δ acclimation temperature) in five populations of an urban-tolerant cyprinid, the blacknose dace (Rhinichthys atratulus), from multiple watersheds along an urban/rural gradient. Thermal tolerance of these stream fish was tested while swimming at 10 cm*s-1 but also in static water and after thermal shocks of 4°-6 °C simulating precipitation events. To test whether blacknose dace as a species has unusual thermal tolerance or thermal plasticity, we also compared two blacknose dace populations with two co-resident, co-familiars (creek chub (Semotilus atromaculatus) and rosyside dace (Clinostomus funduloides), that don't persist in urban streams at three different acclimation temperatures. Thermal tolerance of blacknose dace, as measured by a critical thermal maximum test (CTMax), was independent of size and activity level, i.e. individuals had identical thermal tolerance whether swimming or resting and CTMax was significantly repeatable across two levels of activity. Although there was some variance among populations, blacknose dace from streams of varied urbanization generally exhibited comparable thermal tolerances, ability to acclimate to different temperatures and were unaffected by thermal shocks. Rosyside dace had significantly lower thermal tolerance than the other two species but plasticity of thermal tolerance was uniform across the three cyprinid species. Our conclusions are that exceptional thermal tolerance or ability to thermally acclimate are not pre-requisite characters for a given cyprinid species to survive in urban streams, nor has thermal tolerance undergone directional selection in this urban environment.


Assuntos
Cyprinidae/fisiologia , Resposta ao Choque Térmico , Natação , Animais , Cidades , Rios
8.
J Exp Biol ; 223(Pt 5)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32098876

RESUMO

Juvenile striped bass residing in Chesapeake Bay are likely to encounter hypoxia that could affect their metabolism and performance. The ecological success of this economically valuable species may depend on their ability to tolerate hypoxia and perform fitness-dependent activities in hypoxic waters. We tested whether there is a link between hypoxia tolerance (HT) and oxygen consumption rate (MO2 ) of juvenile striped bass measured while swimming in normoxic and hypoxic water, and to identify the interindividual variation and repeatability of these measurements. HT (loss of equilibrium) of fish (N=18) was measured twice collectively, 11 weeks apart, between which MO2  was measured individually for each fish while swimming in low flow (10.2 cm s-1) and high flow (∼67% of critical swimming speed, Ucrit) under normoxia and hypoxia. Both HT and MO2  varied substantially among individuals. HT increased across 11 weeks while the rank order of individual HT was significantly repeatable. Similarly, MO2  increased in fish swimming at high flow in a repeatable fashion, but only within a given level of oxygenation. MO2  was significantly lower when fish were swimming against high flow under hypoxia. There were no clear relationships between HT and MO2  while fish were swimming under any conditions. Only the magnitude of increase in HT over 11 weeks and an individual's MO2  under low flow were correlated. The results suggest that responses to the interacting stressors of hypoxia and exercise vary among individuals, and that HT and change in HT are not simple functions of aerobic metabolic rate.


Assuntos
Bass/fisiologia , Metabolismo Energético , Consumo de Oxigênio , Oxigênio/metabolismo , Animais , Feminino , Masculino , Condicionamento Físico Animal , Distribuição Aleatória , Natação/fisiologia
10.
PLoS Pathog ; 13(3): e1006219, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278237

RESUMO

Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.


Assuntos
Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Animais , Separação Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Hibridização In Situ , Macaca mulatta , Masculino , Testes de Neutralização , Reação em Cadeia da Polimerase , Viremia/virologia , Zika virus
11.
Nature ; 502(7469): 100-4, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24025770

RESUMO

Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69-172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Citomegalovirus/genética , Citomegalovirus/imunologia , Feminino , Macaca mulatta , Masculino , Dados de Sequência Molecular , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Fatores de Tempo , Vacinas Atenuadas/imunologia , Carga Viral , Replicação Viral/fisiologia
12.
PLoS Pathog ; 12(11): e1006014, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27829026

RESUMO

Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68-1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68-1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68-1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68-1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68-1 and 68-1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics.


Assuntos
Infecções por Citomegalovirus/transmissão , Citomegalovirus/genética , Modelos Animais de Doenças , Macaca fascicularis/virologia , Macaca mulatta/virologia , Animais , Infecções por Citomegalovirus/genética , DNA Viral/análise , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Especificidade da Espécie
13.
Breast J ; 24(1): 12-15, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28675577

RESUMO

Accelerated partial breast irradiation (APBI) is an increasingly utilized modality for early stage breast cancer as part of breast conservation therapy (BCT). There remains concern regarding local recurrence, requiring more frequent post-radiation surveillance imaging. The purpose of this study is to determine clinical significance of frequent surveillance in this perceived higher risk population. Patients treated at a community academic medical center from 2005 to 2013 with partial breast radiation were retrospectively identified. All patients were treated with lumpectomy followed by balloon based APBI. Diagnostic, clinical, radiographic, and outcomes data were collected. One hundred and sixty-nine patients were identified. Median age at time of diagnosis was 63. Stage was 0, I, and II in 27%, 64%, and 9%, respectively. Most patients had pure invasive ductal cancer. Ninety-two percent and 99% of patients had imaging performed by 6 and 12 months (± 3 months) respectively. Median interval between end of radiation and first image, and subsequent 3 images were 6, 6, 9, and 12 months, respectively. Median follow-up was 49 months for all patients (range 7-106). Six patients experienced local recurrence: 4 invasive, all clinically detected, and none within the first 2 years. One patient had mammographically detected recurrent ductal carcinoma in situ. No mammographic images within the first year lead to diagnosis of recurrent cancer. APBI via balloon base brachytherapy offered women excellent locoregional control rates. Frequent mammographic surveillance did not result in increased detection of early recurrent disease. The result of our study are in line with the Choosing Wisely campaign recommendations to perform no more than annual follow-up for women who have completed radiation as part of BCT, with first imaging done at 6-12 months. We recommend mammographic surveillance be performed no more frequently than annually, with first image after BCT to be done 12 months from completion of radiation.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/prevenção & controle , Braquiterapia , Neoplasias da Mama/radioterapia , Feminino , Humanos , Imageamento por Ressonância Magnética , Mamografia , Uso Excessivo dos Serviços de Saúde/economia , Uso Excessivo dos Serviços de Saúde/prevenção & controle , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Ultrassonografia Mamária
14.
PLoS Pathog ; 11(5): e1004881, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25955717

RESUMO

Human Cytomegalovirus (HCMV) encodes multiple microRNAs (miRNAs) whose functions are just beginning to be uncovered. Using in silico approaches, we identified the Toll-Like Receptor (TLR) innate immunity pathway as a possible target of HCMV miRNAs. Luciferase reporter assay screens further identified TLR2 as a target of HCMV miR-UL112-3p. TLR2 plays a major role in innate immune response by detecting both bacterial and viral ligands, including HCMV envelope proteins gB and gH. TLR2 activates a variety of signal transduction routes including the NFκB pathway. Furthermore, TLR2 plays an important role in controlling CMV infection both in humans and in mice. Immunoblot analysis of cells transfected with a miR-UL112-3p mimic revealed that endogenous TLR2 is down-regulated by miR-UL112-3p with similar efficiency as a TLR2-targeting siRNA (siTLR2). We next found that TLR2 protein level decreases at late times during HCMV infection and correlates with miR-UL112-3p accumulation in fibroblasts and monocytic THP1 cells. Confirming direct miR-UL112-3p targeting, down-regulation of endogenous TLR2 was not observed in cells infected with HCMV mutants deficient in miR-UL112-3p expression, but transfection of miR-UL112-3p in these cells restored TLR2 down-regulation. Using a NFκB reporter cell line, we found that miR-UL112-3p transfection significantly inhibited NFκB-dependent luciferase activity with similar efficiency as siTLR2. Consistent with this observation, miR-UL112-3p transfection significantly reduced the expression of multiple cytokines (IL-1ß, IL-6 and IL-8) upon stimulation with a TLR2 agonist. Finally, miR-UL112-3p transfection significantly inhibited the TLR2-induced post-translational activation of IRAK1, a kinase located in the upstream section of the TLR2/NFκB signaling axis. To our knowledge, this is the first identified mechanism of TLR2 modulation by HCMV and is the first report of functional targeting of TLR2 by a viral miRNA. These results provide a novel mechanism through which a HCMV miRNA regulates the innate immune response by down-regulating TLR-2 expression.


Assuntos
Citomegalovirus/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MicroRNAs/metabolismo , Interferência de RNA , RNA Viral/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/antagonistas & inibidores , Regiões 3' não Traduzidas , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Genes Reporter , Células HEK293 , Humanos , Imunidade Inata , Quinases Associadas a Receptores de Interleucina-1/genética , Ligantes , MicroRNAs/genética , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Interferente Pequeno , RNA Viral/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
15.
J Surg Oncol ; 116(2): 203-207, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28445590

RESUMO

PURPOSE: Little is known about long-term radiographic findings after treatment with accelerated partial breast irradiation (APBI). METHODS: Univariate and multivariate analysis of factors leading to formation and resolution of seroma were performed in patients treated with lumpectomy and APBI. RESULTS: Post-treatment images of 129 patients were reviewed by one radiologist. Median surgical excision volume was 108.9 cc (range 20.5-681.9). Primary mode of imaging was mammogram. Median time from end of RT to first and last surveillance image was 6 and 54 months, respectively. Median number of images was 7 (range 3-12). Seroma was identified in 98 (76%) patients, with median maximum diameter of 3.9 cm. Forty (41%) patients experienced resolution of seroma, at a median time of 29 months (range 6-74). On univariate analysis, surgical excision volume was associated with seroma formation, and tumor stage and margin re-excision were significant on univariate and multivariate analysis. No factors were associated with seroma resolution. CONCLUSION: Seroma formation after APBI resolves around 2.5 years for many patients, but persists for others possibly due to primary tumor and surgical excision volumes. With revised criteria on the definition of positive margins, smaller volumes may lead to decreased risk of seroma formation for future patients.


Assuntos
Braquiterapia , Neoplasias da Mama/terapia , Mastectomia Segmentar , Seroma/diagnóstico por imagem , Seroma/etiologia , Braquiterapia/efeitos adversos , Carcinoma de Mama in situ/patologia , Carcinoma de Mama in situ/terapia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/terapia , Diagnóstico por Imagem/métodos , Feminino , Humanos , Margens de Excisão , Pessoa de Meia-Idade , Análise Multivariada , Estudos Retrospectivos
16.
Nature ; 473(7348): 523-7, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21562493

RESUMO

The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.


Assuntos
Memória Imunológica/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Linfócitos T/imunologia , Vacinas contra a AIDS/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/genética , DNA Viral/análise , Vetores Genéticos/genética , Imunidade nas Mucosas/imunologia , Macaca mulatta/sangue , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , RNA Viral/análise , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/isolamento & purificação , Fatores de Tempo , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Carga Viral , Replicação Viral
17.
J Virol ; 88(10): 5533-42, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24599995

RESUMO

UNLABELLED: Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds-dihydrodibenzothiepines (DHBTs), identified through high-throughput screening-with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE: The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same cellular pathways, may have therapeutic potential for the treatment of dengue virus infections.


Assuntos
Antivirais/metabolismo , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Dopamina D4/antagonistas & inibidores , Transdução de Sinais , Replicação Viral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Sindbis virus/efeitos dos fármacos , Sindbis virus/fisiologia , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/fisiologia
18.
Biol Blood Marrow Transplant ; 20(1): 132-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161922

RESUMO

Human cytomegalovirus (HCMV) infection, including primary infection resulting from transmission from a seropositive donor to a seronegative recipient (D(+)/R(-)), remains a significant problem in the setting of peripheral blood stem cell transplantation (PBSCT). The lack of a suitable animal model for studying HCMV transmission after PBSCT is a major barrier to understanding this process and, consequently, developing novel interventions to prevent HCMV infection. Our previous work demonstrated that human CD34(+) progenitor cell-engrafted NOD-scid IL2Rγc(null) (NSG) mice support latent HCMV infection after direct inoculation and reactivation after treatment with granulocyte colony-stimulating factor. To more accurately recapitulate HCMV infection in the D(+)/R(-) PBSCT setting, granulocyte colony-stimulating factor-mobilized peripheral blood stem cells from seropositive donors were used to engraft NSG mice. All recipient mice demonstrated evidence of HCMV infection in liver, spleen, and bone marrow. These findings validate the NSG mouse model for studying HCMV transmission during PBSCT.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Transplante de Células-Tronco de Sangue Periférico , Animais , Medula Óssea/imunologia , Medula Óssea/patologia , Medula Óssea/virologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Fígado/imunologia , Fígado/patologia , Fígado/virologia , Camundongos , Camundongos Transgênicos , Baço/imunologia , Baço/patologia , Baço/virologia , Transplante Heterólogo , Carga Viral , Ativação Viral , Replicação Viral
19.
J Virol ; 87(17): 9411-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824813

RESUMO

Dengue virus has emerged as a global health threat to over one-third of humankind. As a positive-strand RNA virus, dengue virus relies on the host cell metabolism for its translation, replication, and egress. Therefore, a better understanding of the host cell metabolic pathways required for dengue virus infection offers the opportunity to develop new approaches for therapeutic intervention. In a recently described screen of known drugs and bioactive molecules, we observed that methotrexate and floxuridine inhibited dengue virus infections at low micromolar concentrations. Here, we demonstrate that all serotypes of dengue virus, as well as West Nile virus, are highly sensitive to both methotrexate and floxuridine, whereas other RNA viruses (Sindbis virus and vesicular stomatitis virus) are not. Interestingly, flavivirus replication was restored by folinic acid, a thymidine precursor, in the presence of methotrexate and by thymidine in the presence of floxuridine, suggesting an unexpected role for thymidine in flavivirus replication. Since thymidine is not incorporated into RNA genomes, it is likely that increased thymidine production is indirectly involved in flavivirus replication. A possible mechanism is suggested by the finding that p53 inhibition restored dengue virus replication in the presence of floxuridine, consistent with thymidine-less stress triggering p53-mediated antiflavivirus effects in infected cells. Our data reveal thymidine synthesis pathways as new and unexpected therapeutic targets for antiflaviviral drug development.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/metabolismo , Flavivirus/efeitos dos fármacos , Flavivirus/metabolismo , Timidina/biossíntese , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus de DNA/efeitos dos fármacos , Vírus da Dengue/fisiologia , Modelos Animais de Doenças , Flavivirus/fisiologia , Infecções por Flavivirus/tratamento farmacológico , Floxuridina/farmacologia , Células HEK293 , Células HeLa , Humanos , Leucovorina/farmacologia , Metotrexato/farmacologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Vírus de RNA/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/fisiologia
20.
Front Microbiol ; 15: 1360397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638908

RESUMO

Foot-and-mouth disease (FMD) is a vesicular disease of cloven-hoofed animals with devastating economic implications. The current FMD vaccine, routinely used in enzootic countries, requires at least 7 days to induce protection. However, FMD vaccination is typically not recommended for use in non-enzootic areas, underscoring the need to develop new fast-acting therapies for FMD control during outbreaks. Interferons (IFNs) are among the immune system's first line of defense against viral infections. Bovine type III IFN delivered by a replication defective adenovirus (Ad) vector has effectively blocked FMD in cattle. However, the limited duration of protection-usually only 1-3 days post-treatment (dpt)-diminishes its utility as a field therapeutic. Here, we test whether polyethylene glycosylation (PEGylation) of recombinant bovine IFNλ3 (PEGboIFNλ3) can extend the duration of IFN-induced prevention of FMDV infection in both vaccinated and unvaccinated cattle. We treated groups of heifers with PEGboIFNλ3 alone or in combination with an adenovirus-based FMD O1Manisa vaccine (Adt-O1M) at either 3 or 5 days prior to challenge with homologous wild type FMDV. We found that pre-treatment with PEGboIFNλ3 was highly effective at preventing clinical FMD when administered at either time point, with or without co-administration of Adt-O1M vaccine. PEGboIFNλ3 protein was detectable systemically for >10 days and antiviral activity for 4 days following administration. Furthermore, in combination with Adt-O1M vaccine, we observed a strong induction of FMDV-specific IFNγ+ T cell response, demonstrating its adjuvanticity when co-administered with a vaccine. Our results demonstrate the promise of this modified IFN as a pre-exposure prophylactic therapy for use in emergency outbreak scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA