Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159850

RESUMO

Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.


Assuntos
Acetilglucosamina , Técnicas de Química Analítica , Transdução de Sinais , Acetilglucosamina/análise , Acetilglucosamina/metabolismo , Técnicas de Química Analítica/métodos , Receptores Acoplados a Proteínas G/metabolismo , Bioquímica/métodos , Biotecnologia/métodos
2.
Curr Protoc ; 4(5): e1052, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752278

RESUMO

Cells continuously remodel their intracellular proteins with the monosaccharide O-linked N-acetylglucosamine (O-GlcNAc) to regulate metabolism, signaling, and stress. This protocol describes the use of GlycoID tools to capture O-GlcNAc dynamics in live cells. GlycoID constructs contain an O-GlcNAc binding domain linked to a proximity labeling domain and a subcellular localization sequence. When expressed in mammalian cells, GlycoID tracks changes in O-GlcNAc-modified proteins and their interactomes in response to chemical induction with biotin over time. Pairing the subcellular localization of GlycoID with the chemical induction of activity enables spatiotemporal studies of O-GlcNAc biology during cellular events such as insulin signaling. However, optimizing intracellular labeling experiments requires attention to several variables. Here, we describe two protocols to adapt GlycoID methods to a cell line and biological process of interest. Next, we describe how to conduct a semiquantitative proteomic analysis of O-GlcNAcylated proteins and their interactomes using insulin versus glucagon signaling as a sample application. This articles aims to establish baseline GlycoID protocols for new users and set the stage for widespread use over diverse cellular applications for the functional study of O-GlcNAc glycobiology. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Expression of targeted GlycoID constructs to verify subcellular location and labeling activity in mammalian cells Basic Protocol 2: GlycoID labeling in live HeLa cells for O-GlcNAc proteomic comparisons.


Assuntos
Acetilglucosamina , Humanos , Acetilglucosamina/metabolismo , Proteômica/métodos , Insulina/metabolismo , Animais , Coloração e Rotulagem/métodos , Transdução de Sinais , Proteínas/metabolismo , Células HeLa
3.
ACS Chem Biol ; 17(8): 2153-2164, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35819414

RESUMO

A fundamental mechanism that all eukaryotic cells use to adapt to their environment is dynamic protein modification with monosaccharide sugars. In humans, O-linked N-acetylglucosamine (O-GlcNAc) is rapidly added to and removed from diverse protein sites as a response to fluctuating nutrient levels, stressors, and signaling cues. Two aspects remain challenging for tracking functional O-GlcNAc events with chemical strategies: spatial control over subcellular locations and time control during labeling. The objective of this study was to create intracellular proximity labeling tools to identify functional changes in O-GlcNAc patterns with spatiotemporal control. We developed a labeling strategy based on the TurboID proximity labeling system for rapid protein biotin conjugation directed to O-GlcNAc protein modifications inside cells, a set of tools called "GlycoID." Localized variants to the nucleus and cytosol, nuc-GlycoID and cyt-GlycoID, labeled O-GlcNAc proteins and their interactomes in subcellular space. Labeling during insulin and serum stimulation revealed functional changes in O-GlcNAc proteins as soon as 30 min following signal initiation. We demonstrated using proteomic analysis that the GlycoID strategy captured O-GlcNAcylated "activity hubs" consisting of O-GlcNAc proteins and their associated protein-protein interactions. The ability to follow changes in O-GlcNAc hubs during physiological events such as insulin signaling allows these tools to determine the mechanisms of glycobiological cell regulation. Our functional O-GlcNAc data sets in human cells will be a valuable resource for O-GlcNAc-driven mechanisms.


Assuntos
Proteômica , Açúcares , Acetilglucosamina/metabolismo , Humanos , Insulina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA