Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118483

RESUMO

Endohedral C60 fullerenes with up to four encapsulated Ca atoms were investigated by ab initio molecular dynamics simulations (AIMD). The relatively long runs allow us to describe the correlated movement of the Ca atoms inside the fullerene cage. For the systems with one or two Ca atoms a relatively unimpeded rotation was conjectured by earlier nuclear magnetic resonance experiments and supported by previous ab initio calculations used to sample the potential energy landscape. Here, by AIMD calculations, we confirm not only the circular motion, but also the correlated movement of the two Ca atoms, which is due to electric dipole interactions on the inner surface of the C60 molecule. Furthermore, systems with three and four Ca atoms present highly symmetric configurations of the embedded atoms, which are shown to rotate consistently within the fullerene cage, while more complex charge density patterns emerge. Employing artificial neural network models we perform a force-field mapping, which enables us to reproduce the main characteristics of the actual dynamics, such as the circular motion and the correlated movement of the Ca atoms.

2.
Phys Chem Chem Phys ; 25(4): 3323-3331, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36632794

RESUMO

Electronic and stability properties of quasi-2D alkylammonium perovskites are investigated using density functional theory (DFT) calculations and validated experimentally on selected classes of compounds. Our analysis is focused on perovskite structures of formula (A)2(A')n-1PbnX3n+1, with large cations A = butyl-, pentyl-, hexylammonium (BA, PA, HXA), small cations A' = methylammonium, formamidinium, ethylammonium, guanidinium (MA, FA, EA, GA) and halogens X = I, Br, Cl. The role of the halogen ions is outlined for the band structure, stability and defect formation energies. Two opposing trends are found for the absorption efficiency versus stability, the latter being assessed with respect to possible degradation mechanisms. Experimental validation is performed on quasi-2D perovskites based on pentylammonium cations, namely: (PA)2PbX4 and (PA)2(MA)Pb2X7, synthesized by antisolvent-assisted vapor crystallization. Structural and optical analysis are inline with the DFT based calculations. In addition, the thermogravimetric analysis shows an enhanced stability of bromide and chloride based compounds, in agreement with the theoretical predictions.

3.
Nanotechnology ; 29(35): 355202, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29866948

RESUMO

We investigate the prospects for current modulation in single layer graphene Y-junctions in the ballistic regime, under an external electric field. Overcoming the inability of inducing field effect in graphene nanoribbons by a stacked gate, the proposed in-plane electric field setup enables a controlled current transfer between the branches of the Y-junction. This behavior is further confirmed by changing the angular incidence of the electric field. The ballistic transmission functions are calculated for the three terminal system using the non-equilibrium Green's function formalism, in the framework of density functional theory, under finite bias conditions. The edge currents dominating the transport in zigzag nanoribbons are strongly influenced by the induced dipole charge, facilitating the current modulation even for the metallic-like character of the Y-junctions. Spin polarization effects indicate the possibility of achieving spin filtering even in the absence of the external field provided the antiferromagnetic couplings between the edges are asymptotically set. Overall, our results indicate a robust behavior regarding the tunability of the charge current in the two outlet ports, showing the possibility of inducing field effect control in a single layer graphene system.

4.
Nano Lett ; 16(7): 4569-75, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27347816

RESUMO

We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization.

5.
Phys Chem Chem Phys ; 17(45): 30417-23, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26509658

RESUMO

Rutile-TiO2/hybrid halide perovskite CH3NH3PbI3-xClx interfaces are investigated by ab initio density functional theory calculations. The role of chlorine in achieving enhanced solar cell power conversion efficiencies is in the focus of recent studies, which point to increased carrier mobilities, reduced recombination rates, a driven morphology evolution of the perovskite layer and improved carrier transport across the interface. As it was recently established that chlorine is preferentially localized in the vicinity of the interface and not in the bulk of the perovskite layer, we analyze the changes introduced in the electronic properties by varying the chlorine concentration near the interface. In particular, we discuss the effects introduced in the electronic band structure and show the role of chlorine in the enhanced electron injection into the rutile-TiO2 layer. Taking into account these implications, we discuss the conditions for optimizing the solar cell efficiency in terms of interfacial chlorine concentration.

6.
Phys Chem Chem Phys ; 16(34): 18478-82, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25072353

RESUMO

The transport properties of single ferrocene molecules connected to nanoscopic gold electrodes are investigated in the framework of density functional theory (DFT) calculations using the non-equilibrium Green's function formalism. Our setup describes a molecular rotor, where one cyclopentadienyl (Cp) ring of the ferrocene molecule is fixed by the two electrodes, while the second ring is able to rotate. For small enough rotation energies the barrier between the eclipsed and staggered conformations of the ferrocene molecule ensures the functionality of a molecular oscillator. The changes in the transmission function introduced by the relative rotation angle between the two Cp rings are analyzed in both linear and non-linear bias regimes. For larger rotation energies, the device works in the spinning mode. The real time behavior of the nanomechanical device is investigated using DFT-based molecular dynamics, which shows its feasibility for applications in the terahertz regime. In the oscillating mode the natural frequencies are determined, while the spinning mode shows a remarkably reliable behavior with increasing rotation energy.

7.
Artigo em Inglês | MEDLINE | ID: mdl-24229158

RESUMO

We describe a mean field interacting particle system in any number of dimensions and in a generic external potential as an ideal gas with fractional exclusion statistics (FES). We define the FES quasiparticle energies, we calculate the FES parameters of the system and we deduce the equations for the equilibrium particle populations. The FES gas is "ideal," in the sense that the quasiparticle energies do not depend on the other quasiparticle levels' populations and the sum of the quasiparticle energies is equal to the total energy of the system. We prove that the FES formalism is equivalent to the semiclassical or Thomas Fermi limit of the self-consistent mean-field theory and the FES quasiparticle populations may be calculated from the Landau quasiparticle populations by making the correspondence between the FES and the Landau quasiparticle energies. The FES provides a natural semiclassical ideal gas description of the interacting particle gas.

8.
J Phys Condens Matter ; 24(32): 326003, 1-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22785224

RESUMO

Ab initio calculations are performed in the framework of density functional theory on Mn-doped boron nitride sheets, which are candidates for two-dimensional diluted magnetic semiconductors (DMSs). Each type of substitution reveals a qualitatively different magnetic behavior encompassing ferromagnetic, anti-ferromagnetic and spin glass ordering. The ability of formation of these defects is also discussed. We analyze the dependence of the exchange couplings on the distance between impurities and the typical range and distribution are extracted. Multiple-impurity configurations are considered and the results are mapped on an Ising-type Hamiltonian with higher order exchange interactions, revealing deviations from the standard two-spin models. The percolation of interacting magnetic moments is discussed and the critical concentration is determined for the underlying transition from a ferromagnetic to a super-paramagnetic state. We conclude our study by providing the optimal conditions for doping in order to obtain a ferromagnetic DMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA