RESUMO
Methods evaluating the status of the injured brain have evolved over the past 63 years since Lundberg first reported clinical measurement of intracranial pressure (ICP) to evaluate the status of the injured brain (Lundberg, Acta Psychiatr Scand Suppl. 36:1-193, 1960). Subsequent evaluation involved measurement of the autoregulatory capacity of the brain by measuring cerebral blood flow (CBF) with decreasing mean arterial pressure (MAP) to define the critical CPP where the vasodilatory capacity of the cerebral circulation is exceeded and CBF begins to fall (CPP of 50 mmHg). A seminal advance was made by Marmarou (Marmarou et al., J Neurosurg. 48:332-344, 1978) who measured brain compliance by injecting a bolus of saline into the intracranial catheter while measuring the rise in intracranial pressure (ICP) otherwise known as induced pressure reactivity (iPRx). Seeking to utilise continuous measurement of iPRx in traumatic brain injury (TBI) patients with continuous monitoring of ICP, the ICP response to arterial pulsations was developed to evaluate the optimal CPP patients with raised ICP by the arterial pulsations-based iPRx. A similar approach was made with Doppler measurement of CBF with arterial pulsations for iCVRx to guide optimal CPP (CPPopt). Both iPRx and iCVRx are associated with microvascular shunts (MVS) and can accurately measure the critical CPP, whereas the CBF autoregulation curve by decreasing MAP does not. Sophisticated continuous multimodal monitoring established with ICM+ algorithms successfully identifies CPPopt for ICP control and identifies CBF dysregulation as related to outcome, but does not provide insights into the mechanisms involved in the loss of CBF autoregulation as related to increased ICP and potentially effective treatments (Froese et al., Neurocrit Care. 34:325-335, 2021).
Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Pressão Intracraniana , Humanos , Encéfalo/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/fisiopatologia , Circulação Cerebrovascular/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Homeostase , Pressão Intracraniana/fisiologia , Congressos como AssuntoRESUMO
In the 50 years of my membership in ISOTT, I, Edwin M Nemoto, have enjoyed the application of many of the technologies developed in our society including microelectrodes for pH, PO2, and near-infrared spectroscopy (NIRS) in the measurement of tissue oxygenation and metabolism. The greatest joy has been the number of great scientists I have had the pleasure of knowing and exchanging scientific ideas with across the United States, Europe, and Asia. This will be the enduring legacy of ISOTT for me personally as we continue beyond our half-century existence.Every organ in our body, including the tegmentum, is endowed with microvascular shunts (MVS), which may be involved in physiological regulation, i.e. temperature regulation or pathophysiological responses to tissue injury and oedema. MVS that open in response to increased capillary resistance and tissue oedema in the brain, heart, kidneys, liver, and muscles conduct neither nutrient nor gas exchange with tissue promoting tissue oedema in a vicious cycle. Pharmacologic arteriolar vasodilation cannot correct the MVS flow as may occur after a stroke or traumatic brain injury because pan arteriolar vasodilation would shunt flow to the normal tissue and away from the injured brain in a "reverse" steal or a "Robin Hood" phenomenon. A high molecular weight (4000 kDa) drag-reducing polymer (DRP) of polyethylene oxide or Lamiflo™ enhances blood flow by altering the physical dynamics of red blood cells (RBC) and blood flow, increasing the shear rate in the microvasculature and capillaries where shear rate is highest as it is inversely proportional to the 3rd power of blood vessel diameter. The shear rate sensed on the endothelium through the glycocalyx exerts precise control of endothelial function, including endothelial water permeability, nitric oxide synthase activity, lymphocyte adhesion to and transport across the endothelium, and microglial activation, all in response to low endothelial shear rate. DRP has proven effective in reversing MVS flow and increasing capillary flow in haemorrhagic shock, myocardial ischaemia, stroke, renal ischaemia, traumatic brain injury, stroke, sepsis, and Alzheimer's Disease. Our aim is to establish the universality of MVS in the pathogenesis of vascular disease and in taking DRP to clinical treatment of vascular diseases.
Assuntos
Pressão Intracraniana , Humanos , Animais , Polímeros/química , Microcirculação/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/fisiopatologiaRESUMO
The aims of the study were to evaluate posttraumatic cerebral ischaemia (PTCI) incidence in severe traumatic brain injury (TBI) patients and to assess the intracranial pressure (ICP) and cerebrovascular reactivity dynamics during intrahospital transportation (IT). MATERIALS: A total of 153 severe TBI patients and 182 IT were included. The mean Glasgow Coma Scale (GCS) score was 6.7 ± 2.1. ICP and arterial pressure were invasively monitored, and an improved pressure reactivity index (iPRx) was calculated from the measured parameters. Statistical analysis was done using Student's t-criterion and Wilcoxon criterion where appropriate. RESULTS: Perfusion computed tomography (PCT) revealed a neuroimaging PTCI pattern in all 153 severe TBI patients (100%). In 58 patients (37.9%), ischaemia extended to both hemispheres; in 95 patients (62.1%), it affected only one hemisphere. The mean ICP during IT was significantly higher (26.1 ± 13.5 mm Hg, p < 0.001) than before the IT (19.9 ± 5.3 mm Hg). All patients had increased ICP, especially during vertical movement in an elevator (maximum 75.2 mm Hg). CONCLUSION: PTCI was detected in all severe TBI patients in coma. The IT of comatose severe TBI patients leads to a significant increase in ICP and iPRx.
Assuntos
Lesões Encefálicas Traumáticas , Isquemia Encefálica , Circulação Cerebrovascular , Pressão Intracraniana , Humanos , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Circulação Cerebrovascular/fisiologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/diagnóstico por imagem , Incidência , Escala de Coma de Glasgow , Transporte de Pacientes , Idoso , Adulto Jovem , Tomografia Computadorizada por Raios XRESUMO
An early event in the pathology of traumatic brain injury (TBI) is a reduction in cerebral blood flow (CBF), which exacerbates secondary injury development and inhibits brain recovery. The endogenous cannabinoid system signalling (eCBs) might be critical in TBI recovery due to modulating synaptic activity and exerting neuroprotective and anti-inflammatory effects. In the brain, eCBs predominantly occur at cannabinoid receptor type 1 via the eCB 2-arachidonoylglycerol (2-AG). The aim of this work was to test the efficacy of potentiating 2-AG signalling by monoacylglycerol lipase (MAGL) inhibition using ABX-1431 immediately following TBI. Laser speckle contrast imaging (LSCI) was used to create a high-resolution map of regional cerebral blood flow (CBF) over the pericontusion cortical surface. In-vivo two-photon laser scanning microscopy (2PLSM) was used to monitor cerebral microcirculation (i.v. fluorescein isothiocyanate dextran, FITC) and mitochondrial respiration and brain tissue oxygen supply (nicotinamide adenine dinucleotide autofluorescence, NADH) during 4 hours after CHI. After baseline imaging, male C57BL/6 J mice (10-12 weeks, >28 g) were subjected to a modified moderate Shohami weight-drop closed-head injury (CHI) followed by i.p. injection of ABX-1431 (5 mg/kg) or vehicle 30 min after the insult (10 mice per group). Differences between groups and between time points were determined using two-way repeated measures (ANOVA) for multiple comparisons and post hoc testing with the statistical significance level set at p < 0.05. Optical imaging revealed that CHI caused a decrease in regional CBF, arteriole diameters (vasospasm), and blood flow volume, leading to capillary microthrombosis and a reduction in capillary flow velocity. Compromised cerebral microcirculation led to the development of tissue hypoxia. ABX-1431 application, in a ~30-minute delay, mitigated the development of microvascular dysfunction, microthrombosis formation, and tissue hypoxia compared to the saline control group (p < 0.05, starting 1 hour after CHI). Therefore, MAGL inhibition by ABX-1431 attenuates cerebral ischaemia early after TBI. The observed 2-AG-mediated cerebrovascular relaxation might involve both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium.
Assuntos
Lesões Encefálicas Traumáticas , Isquemia Encefálica , Circulação Cerebrovascular , Monoacilglicerol Lipases , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Masculino , Circulação Cerebrovascular/efeitos dos fármacos , Camundongos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Camundongos Endogâmicos C57BL , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Glicerídeos/metabolismo , Modelos Animais de Doenças , Piperidinas , BenzodioxóisRESUMO
The aim was to study the relationship between net water uptake (NWU) and cerebral oxygenation in patients with posttraumatic ischaemia (PTI) foci after moderate traumatic brain injury (moTBI). MATERIALS AND METHODS: Perfusion computed tomography (PCT) was performed for 72 patients with PTI foci after moTBI in 2013-2022. The mean age of the patients was 32.7 ± 12.5 years (from 18 to 65 years), 25 women and 47 men. Cerebral tissue oxygen saturation (SctO2) was evaluated using Fore-Sight 2030 (CAS Medical Systems Inc., USA) in the region of the frontal lobe pole (FLP). NWU was calculated from non-contrast CT. Data are shown as a median [interquartile range]. P < 0.05 was considered statistically significant. RESULTS: SctO2 in FLP varied within the range from 61% to 88%. It was 62% [55.4;72.1] over the lesion frontal lobe with PTI and 64% [58.5;73.7] over the opposite FLP side. The average NWU in the FLP cortex on the PTI side was 4.98% [2.21;7.39]. In the case when there were no focal injuries in the frontal lobes, SctO2 was significantly correlated with higher NWU (R = -0.780, p < 0.00001). CONCLUSIONS: The cerebral oxygen tissue saturation correlates with net water uptake in patients with PTI after moTBI (p < 0.005).
Assuntos
Lesões Encefálicas Traumáticas , Humanos , Masculino , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Idoso , Tomografia Computadorizada por Raios X , Água/metabolismo , Saturação de Oxigênio , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Oxigênio/metabolismo , Circulação Cerebrovascular/fisiologiaRESUMO
The aim was to study the relationship between eye tracking (ET) parameters and cerebral tissue oxygen saturation (SctO2) values in the acute period of moderate COVID-19 pneumonia. MATERIALS AND METHODS: A single-centre, non-randomised study included 92 patients in the acute period of SARS-CoV-2 moderate pneumonia (Delta variant). The mean time from admission was 1.5 ± 0.9 days. M:49, W:43. The mean age was 34.7 ± 3.9 years. The eye vergence reactivity index (VRx) was determined using a mobile ET. The cerebral oximetry was performed using Fore-Sight 2030 and included the detection of the SctO2 level in the frontal lobe (FLP) region. Statistical analysis was carried out using the methods of parametric statistics. RESULTS: The calculated vertical VRx was 0.781 ± 0.118. The calculated horizontal VRx was 0.821 ± 0.107. SctO2 in the FLP varied within the range from 61% to 73%. The average SctO2 values were 65.4 ± 5.2% over the left FLP and 66.2 ± 6.3% over the right FLP (p = 0.872). The regression analysis showed that HVRx and VVRx were correlated with SctO2 levels in both FLPs (p = 0.035 and p = 0.034, respectively, and p = 0.040 and p = 0.049, respectively). CONCLUSIONS: Cerebral oxygen saturation in moderate pneumonia caused by the SARS-CoV-2 coronavirus has a significant destabilising effect on the oculomotor synergy (VVRx and HVRx) (p < 0.05).
Assuntos
COVID-19 , Oximetria , Saturação de Oxigênio , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/fisiopatologia , Masculino , Feminino , Adulto , Oximetria/métodos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Movimentos Oculares/fisiologia , Pessoa de Meia-Idade , Oxigênio/metabolismoRESUMO
Sepsis, leading to septic shock and multiple organ dysfunction syndrome, is characterised by inflammation, coagulopathy, and microvascular dysfunction, the primary cause of in-hospital mortality. Novel approaches are needed to prevent the consequences of sepsis. We showed that nanomolar concentrations of intravascular blood-soluble drag-reducing polymers (DRPs) significantly improve microvascular perfusion and tissue oxygenation and protect neurons in rat brains after traumatic brain injury and haemorrhagic shock. The aim of this work was to determine whether DRPs-enhanced perfusion could alleviate sepsis-associated microvascular dysregulation in a mouse model of lipopolysaccharide (LPS)-induced sepsis. LPS (Salmonella Thyphosa, 10 mg/kg, i.v.) was administered intravenously to induce acute sepsis in C57BL/6 J mice. DRPs (final concentration 5 ppm in the blood) or saline was injected i.v. (10 mice/group) 1 h after LPS injection to evaluate the efficacy of haemorheological modulation of microvascular dysregulation. In-vivo two-photon laser scanning microscopy was used to monitor cerebral (parietal cortex) and peripheral (ear) microcirculation (i.v. fluorescein isothiocyanate dextran) and tissue oxygen supply (nicotinamide adenine dinucleotide autofluorescence) at a baseline and during 4 h after septic shock induction. Differences between groups were determined using a two-way analysis of variance for multiple comparisons with post hoc testing. The statistical significance was set at p < 0.05. LPS-induced sepsis led to microvascular dysfunction and tissue hypoxia in the brain and peripheral tissue (ear). DRPs alleviated microthrombosis formation, microvascular dysfunction, and tissue hypoxia in the brain and peripheral tissue compared to the saline control group (p < 0.05). Therefore, haemorheological modulation of blood flow by DRPs effectively improves systemic and peripheral circulation, reducing microthrombosis formation, microvascular dysfunction, and tissue hypoxia that can alleviate sepsis, shock, and multiple organ dysfunction syndrome.
Assuntos
Camundongos Endogâmicos C57BL , Microcirculação , Sepse , Animais , Sepse/tratamento farmacológico , Sepse/complicações , Camundongos , Microcirculação/efeitos dos fármacos , Masculino , Polímeros/química , Modelos Animais de Doenças , Lipopolissacarídeos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Circulação Cerebrovascular/efeitos dos fármacosRESUMO
Transcranial alternating current stimulation (tACS) is a novel non-invasive electrical stimulation technique where a sinusoidal oscillating low-voltage electric current is applied to the brain. TACS is being actively investigated in practice for cognition and behavior modulation and for treating brain disorders. However, the physiological mechanisms of tACS are underinvestigated and poorly understood. Previously, we have shown that transcranial direct current stimulation (tDCS) facilitates cerebral microcirculation and oxygen supply in a mouse brain through nitric oxide-dependent vasodilatation of arterioles. Considering that the effects of tACS and tDCS might be both similar and dissimilar, we tested the effects of tACS on regional cerebral blood flow and oxygen saturation in anesthetized and awake mice using laser speckle contrast imaging and multispectral intrinsic optical signal imaging. The anesthetized mice were imaged under isoflurane anesthesia â¼1.0% in 30% O2 and 70% N2O. The awake mice were pre-trained on the rotating ball for awake imaging. Baseline imaging with further tACS was followed by post-stimulation imaging for ~3 h. Differences between groups were determined using a two-way ANOVA analysis for multiple comparisons and post hoc testing using the Mann-Whitney U test. TACS increased cerebral blood flow and oxygen saturation. In awake mice, rCBF and oxygen saturation responses were more robust and prolonged as opposed to anesthetized, where the response was weaker and shorter with overshoot. The significant difference between anesthetized and awake mice emphasizes the importance of the experiments on the latter as anesthesia is not typical for human stimulation and significantly alters the results.
Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Camundongos , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Vigília , Microcirculação , Encéfalo/fisiologia , Circulação CerebrovascularRESUMO
Traumatic brain injury (TBI) ultimately leads to a reduction in the cerebral metabolic rate for oxygen due to ischemia. Previously, we showed that 2 ppm i.v. of drag-reducing polymers (DRP) improve hemodynamic and oxygen delivery to tissue in a rat model of mild-to-moderate TBI. Here we evaluated sex-specific and dose-dependent effects of DRP on microvascular CBF (mvCBF) and tissue oxygenation in rats after moderate TBI. In vivo two-photon laser scanning microscopy over the rat parietal cortex was used to monitor the effects of DRP on microvascular perfusion, tissue oxygenation, and blood-brain barrier (BBB) permeability. Lateral fluid-percussion TBI (1.5 ATA, 100 ms) was induced after baseline imaging and followed by 4 h of monitoring. DRP was injected at 1, 2, or 4 ppm within 30 min after TBI. Differences between groups were determined using a two-way ANOVA analysis for multiple comparisons and post hoc testing using the Mann-Whitney U test. Moderate TBI progressively decreased mvCBF, leading to tissue hypoxia and BBB degradation in the pericontusion zone (p < 0.05). The i.v. injection of DRP increased near-wall flow velocity and flow rate in arterioles, leading to an increase in the number of erythrocytes entering capillaries, enhancing capillary perfusion and tissue oxygenation while protecting BBB in a dose-dependent manner without significant difference between males and females (p < 0.01). TBI resulted in an increase in intracranial pressure (20.1 ± 3.2 mmHg, p < 0.05), microcirculatory redistribution to non-nutritive microvascular shunt flow, and stagnation of capillary flow, all of which were dose-dependently mitigated by DRP. DRP at 4 ppm was most effective, with a non-significant trend to better outcomes in female rats.
Assuntos
Lesões Encefálicas Traumáticas , Polímeros , Feminino , Masculino , Ratos , Animais , Polímeros/metabolismo , Microcirculação , Lesões Encefálicas Traumáticas/tratamento farmacológico , Barreira Hematoencefálica/metabolismo , Oxigênio/metabolismo , Circulação CerebrovascularRESUMO
We compared differences in perfusion computed tomography (PCT)-derived arterial and venous cerebral blood flow (CBF) in moderate-to-severe traumatic brain injury (TBI) as an indication of changes in cerebral venous outflow patterns referenced to arterial inflow. Moderate-to-severe TBI patients (women 53; men 74) underwent PCT and were stratified into 3 groups: I (moderate TBI), II (diffuse severe TBI without surgery), and III (diffuse severe TBI after the surgery). Arterial and venous CBF was measured by PCT in both the middle cerebral arteries (CBFmca) and the upper sagittal sinus (CBFuss). In group I, CBFmca on the left and right sides were significantly correlated with each other (p < 0.0001) and with CBFuss (p = 0.048). In group II, CBFmca on the left and right sides were also correlated (p < 0.0000001) but not with CBFuss. Intracranial pressure reactivity (PRx) and CBFuss were correlated (p = 0.00014). In group III, CBFmca on the side of the removed hematoma was not significantly different from the opposite CBFmca (p = 0.680) and was not correlated with CBFuss. Conclusions: The increasing severity of TBI is accompanied by an impairment of the correlation between the arterial and venous CBF in the supratentorial vessels suggesting shifting in arterial and venous CBF in severe TBI associated with increased ICP reflected by PRx.
Assuntos
Lesões Encefálicas Traumáticas , Masculino , Humanos , Feminino , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Circulação Cerebrovascular/fisiologia , Artéria Cerebral Média/diagnóstico por imagem , Perfusão , Pressão Intracraniana/fisiologiaRESUMO
We assessed net water uptake changes (NWU) in regions of posttraumatic ischemia in relation to cerebral microcirculation mean transit time (MTT) at moderate-to-severe traumatic brain injury (TBI). MATERIALS AND METHODS: 128 moderate-to-severe traumatic brain injury patients (44 women, 84 men, age: 37 ± 12 years) were stratified into 3 groups: Marshall 2-3: 48 patients, Marshall 4: 44 patients, Marshall 5: 36 patients. The groups were matched by sex and age. Patients received multiphase perfusion computed tomography (PCT) 1-5 days after admission. Net water uptake was calculated from non-contrast computed tomography. Data are shown as a median [interquartile range]. P < 0.05 was considered statistically significant. RESULTS: Cerebral blood flow in posttraumatic ischemia foci in Marshall 4 group was significantly higher than that in the Marshall 5 group (p = 0.027). Net water uptake in posttraumatic ischemia zones was significantly higher than in zones without posttraumatic ischemia (8.1% versus 4.2%, p < 0.001). Mean transit time in posttraumatic ischemia zones was inversely and significantly correlated with higher net water uptake (R2 = 0,089, p < 0.01). CONCLUSIONS: Delay of blood flow through the cerebral microvascular bed was significantly correlated with the increased net water uptake in posttraumatic ischemia foci. Marshall's classification did not predict the progression of posttraumatic ischemia.
Assuntos
Lesões Encefálicas Traumáticas , Isquemia Encefálica , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Isquemia Encefálica/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Hemodinâmica , Circulação Cerebrovascular/fisiologia , IsquemiaRESUMO
BACKGROUND: Intrahospital transportation (IHT) of patients with traumatic brain injury (TBI) is common and may have adverse consequences, incurring inherent risks. The data on the frequency and severity of clinical complications linked with IHT are contradictory, and there is no agreement on whether it is safe or potentially challenging for neurocritical care unit patients. Continuous intracranial pressure (ICP) monitoring is essential in neurointensive care. The role of ICP monitoring and management of cerebral autoregulation impairments in IHT of patients with severe TBI is underinvestigated. The purpose of this nonrandomized retrospective single-center study was to assess the dynamics of ICP and an improved pressure reactivity index (iPRx) as a measure of autoregulation during IHT. METHODS: Seventy-seven men and fourteen women with severe TBI admitted in 2012-2022 with a mean age of 33.2 ± 5.2 years were studied. ICP and arterial pressure were invasively monitored, and cerebral perfusion pressure and iPRx were calculated from the measured parameters. All patients were subjected to dynamic helical computed tomography angiography using a 64-slice scanner Philips Ingenuity computed tomography scan 1-2 days after TBI. Statistical analysis of all results was done using a paired t-test, and p was preset at < 0.05. The logistic regression analysis was performed for cerebral ischemia development dependent on intracranial hypertension and cerebrovascular reactivity. RESULTS: IHT led to an increase in ICP in all the patients, especially during vertical movement in an elevator (maximum 75.2 mm Hg). During the horizontal transportation on the floor, ICP remained increased (p < 0.05). The mean ICP during IHT was significantly higher (26.1 ± 13.5 mm Hg, p < 0.001) than that before the IHT (19.9 ± 5.3 mm Hg). The mean iPRx after and before IHT was 0.52 ± 0.04 and 0.23 ± 0.14, respectively (p < 0.001). CONCLUSIONS: Both horizontal and vertical transportation causes a significant increase in ICP and iPRx in patients with severe TBI, potentially leading to the outcome worsening.
RESUMO
Low flow and microvascular shunts (MVS) is the final common pathway in cerebrovascular disease. Low flow in brain capillaries (diam. 3-8 µm) decreases endothelial wall shear rate sensed by the glycocalyx regulating endothelial function: water permeability; nitric oxide synthesis via nitric oxide synthase; leucocyte adhesion to the endothelial wall and penetration into the tissue; activation of cytokines and chemokines initiating inflammation in tissue. Tissue edema combined with pericyte and astrocyte capillary constriction increases capillary resistance. Increased capillary resistance diverts flow through MVS (diam. 10-25 µm) that are non-nutritive, without gas exchange, waste or metabolite clearance and cerebral blood flow (CBF) regulation. MVS predominate in subcortical and periventricular white matter. The shift in flow from capillaries to MVS is a pathological, maladaptive process. Low perfusion in the injured tissue exacerbates brain edema. Low blood flow and MVS alone can lead to all of the processes involved in tissue injury including inflammation and microglial activation.
Assuntos
Circulação Cerebrovascular , Transtornos Cerebrovasculares , Animais , Ratos , Humanos , Ratos Sprague-Dawley , Circulação Cerebrovascular/fisiologia , Capilares/fisiologia , InflamaçãoRESUMO
The concept of hemodynamic compromise (HC) is used to detect brain regions under ischemic stress by impaired ability to dilate in response to a vasodilatory challenge for cerebrovascular reserve (CVR). The vasodilatory challenges are either inhaled CO2 or a carbonic anhydrase inhibitor acetazolamide (AZ) with measurements of cerebral blood flow (CBF) before and during the challenge. The rationale for CVR is that the brain under ischemic stress is vasodilated and the increase in CBF is attenuated. However, regional oxygen extraction fraction (OEF) by positron emission tomography (PET) is the gold standard for measurement of HC. We showed a strong correlation between CVR and OEF and the OEF response (OEFR) before and after vasodilation in patients with acute ischemic stroke. These observations suggest that CVR measurements alone identify brain regions under ischemic stress without the need for expensive, time consuming and difficult PET OEF.
Assuntos
AVC Isquêmico , Humanos , Circulação Cerebrovascular/fisiologia , Acetazolamida/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Hemodinâmica , Oxigênio , Encéfalo/diagnóstico por imagemRESUMO
Continuous noninvasive monitoring of muscle oxygenation has important clinical applications for muscle disorders such as compartmentation syndrome, fibromyalgia, deep vein thrombosis, malignant hyperthermia, and the assessment of training in athletic performance. NIRS has precisely such potential and has been used to detect deep venous thrombosis, evaluate athletic performance, and assess limb reperfusion and revascularization. The aim of this study was to examine the relationship between muscle hemoglobin oxygen (HbO2) and myoglobin (MbO2) desaturation using NIRS combined with venous blood sampling and HbO2 desaturation during forearm muscle exercise. Eleven normal subjects were studied, with informed consent and an IRB-approved protocol. A NIRS sensor (INVOS4100, Somanetics, Corp.) was applied on the volar aspect of the forearm. The subjects exercised their forearm by clenching and relaxing their fist while observing the oximeter and driving the reading to specified levels from 90% to 15% (minimum possible reading). Venous blood samples were withdrawn for measurement of blood gases and oxygen saturation (IL-Co-Oximeter). RSO2 (%) vs VO2 Sat showed a two-component HbO2 desaturation suggesting representation of venous HbO2 desaturation and perhaps myoglobin oxygen (MBO2) desaturation. Subtraction of the linear venous HbO2 curve from the two-component curve suggests MbO2 desaturation at venous hemoglobin oxygen saturation of about 10-20%. Conclusions: The kinetics of desaturation during exercise revealed two components representing HbO2 and MbO2 deoxygenation. The data show that MbO2 represents approximately 40% of the NIRS signal and the balance or 60% to HbO2.
Assuntos
Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho , Antebraço , Humanos , Músculo Esquelético/metabolismo , Oximetria , Oxigênio/metabolismoRESUMO
Normal brain function requires an integrated, simultaneous communication between brain regions in a coordinated manner. In our studies on cortical spreading depolarization (CSD) induced electrically in the rat brain while recording electrocorticography (ECoG) and delta wave activity, we found for the first time that CSD suppressed delta wave activity, which began even before the CSD was fully developed. We pursued this observation to determine whether repeated CSD suppressed delta wave activity in rats. CSD was produced by electrical stimulation of the neocortex while recording the development of CSD and changes in the coupling of low-frequency band cross coupling to four typical physiological neuronal activity frequency bands, i.e., 5-7 Hz, 8-12 Hz, 13-30 Hz, and 30-80 Hz. Band-pass filters were applied to achieve the corresponding physiological band signals. Besides the cross-frequency coupling (CFC) analysis, the distribution of delta wave density in time domain was analyzed. We calculated the delta wave density per 30 seconds but represent the density as frequency per minute. A Generalized Linear Models (GLM) was used to carry out the CFC analysis in Matlab. Because delta waves dominated the ECoG recorded, we modeled the higher-frequency amplitude envelope as a function of low-frequency phase using a spline basis. Besides the CFC analysis, we also characterized the distribution of the delta wave density in time domain. Four CFC, Theta, Alpha, Beta, and Gamma were at very small values after CSD, and after about 8 minutes, the CFC recovered to the pre-CSD level. CFC were seen to decrease before a CSD occurred at the higher-frequency bands and tended to decrease quickly. Whether the attenuated CFC by CSD has long-term consequences remains to be determined. Future studies will explore the impact of cortical CSD on CFC with deeper brain structures, including the thalamus and the caudate putamen.
Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Animais , Encéfalo , Depressão , Estimulação Elétrica , Neurônios , RatosRESUMO
Hemorrhagic shock (HS) is a severe complication of traumatic brain injury (TBI) that doubles mortality due to severely compromised microvascular cerebral blood flow (mvCBF) and oxygen delivery reduction, as a result of hypotension. Volume expansion with resuscitation fluids (RF) for HS does not improve microvascular CBF (mvCBF); moreover, it aggravates brain edema. We showed that the addition of drag-reducing polymers (DRP) to crystalloid RF (lactated Ringer's) significantly improves mvCBF, oxygen supply, and neuronal survival in rats suffering TBI+HS. Here, we compared the effects of colloid RF (Hetastarch) with DRP (HES-DRP) and without (HES). Fluid percussion TBI (1.5 ATA, 50 ms) was induced in rats and followed by controlled HS to a mean arterial pressure (MAP) of 40 mmHg. HES or HES-DRP was infused to restore MAP to 60 mmHg for 1 h (prehospital period), followed by blood reinfusion to a MAP of 70 mmHg (hospital period). In vivo two-photon microscopy was used to monitor cerebral microvascular blood flow, tissue hypoxia (NADH), and neuronal necrosis (i.v. propidium iodide) for 5 h after TBI+HS, followed by postmortem DiI vascular painting. Temperature, MAP, blood gases, and electrolytes were monitored. Statistical analyses were done using GraphPad Prism by Student's t-test or Kolmogorov-Smirnov test, where appropriate. TBI+HS compromised mvCBF and tissue oxygen supply due to capillary microthrombosis. HES-DRP improved mvCBF and tissue oxygenation (p < 0.05) better than HES. The number of dead neurons in the HES-DRP was significantly less than in the HES group: 76.1 ± 8.9 vs. 178.5 ± 10.3 per 0.075 mm3 (P < 0.05). Postmortem visualization of painted vessels revealed vast microthrombosis in both hemispheres that were 33 ± 2% less in HES-DRP vs. HES (p < 0.05). Thus, resuscitation after TBI+HS using HES-DRP effectively restores mvCBF and reduces hypoxia, microthrombosis, and neuronal necrosis compared to HES. HES-DRP is more neuroprotective than lactated Ringer's with DRP and requires an infusion of a smaller volume, which reduces the development of hypervolemia-induced brain edema.
Assuntos
Lesões Encefálicas Traumáticas , Choque Hemorrágico , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Coloides , Microcirculação , Polímeros , Ratos , Ratos Sprague-Dawley , Ressuscitação , Choque Hemorrágico/terapiaRESUMO
Hemorrhagic shock (HS) after traumatic brain injury (TBI) reduces cerebral perfusion pressure (CPP) and cerebral blood flow (CBF), increasing hypoxia and doubling mortality. Volume expansion with resuscitation fluids (RFs) for HS does not improve CBF and tissue oxygen, while hypervolemia exacerbates brain edema and elevates intracranial pressure (ICP). We tested whether drag-reducing polymers (DRPs), added to isotonic Hetastarch (HES), would improve CBF but prevent ICP increase. TBI was induced in rats by fluid percussion, followed by controlled hemorrhage to mean arterial pressure (MAP) = 40 mmHg. HES-DRP or HES was infused to MAP = 60 mmHg for 1 h, followed by blood reinfusion to MAP = 70 mmHg. Temperature, MAP, ICP, cortical Doppler flux, blood gases, and electrolytes were monitored. Microvascular CBF, tissue hypoxia, and neuronal necrosis were monitored by two-photon laser scanning microscopy 5 h after TBI/HS. TBI/HS reduced CPP and CBF, causing tissue hypoxia. HES-DRP (1.9 ± 0.8 mL) more than HES (4.5 ± 1.8 mL) improved CBF and tissue oxygenation (p < 0.05). In the HES group, ICP increased to 23 ± 4 mmHg (p < 0.05) but in HES-DRP to 12 ± 2 mmHg. The number of dead neurons, microthrombosis, and the contusion volume in HES-DRP were significantly less than in the HES group (p < 0.05). HES-DRP required a smaller volume, which reduced ICP and brain edema.
Assuntos
Lesões Encefálicas Traumáticas , Choque Hemorrágico , Animais , Pressão Sanguínea , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Circulação Cerebrovascular , Pressão Intracraniana , Microcirculação , Perfusão , Polímeros , Ratos , Choque Hemorrágico/complicações , Choque Hemorrágico/terapiaRESUMO
Outcome after traumatic brain injury (TBI) is worsened by hemorrhagic shock (HS); however, the existing volume expansion approach with resuscitation fluids (RF) is controversial as it does not adequately alleviate impaired microvascular cerebral blood flow (mCBF). We previously reported that resuscitation fluid with drag reducing polymers (DRP-RF) improves CBF by rheological modulation of hemodynamics. Here, we evaluate the efficacy of DRP-RF, compared to lactated Ringers resuscitation fluid (LR-RF), in reducing cerebral microthrombosis and reperfusion mitochondrial oxidative stress after TBI complicated by HS. Fluid percussion TBI (1.5 ATA, 50 ms) was induced in rats and followed by controlled HS to a mean arterial pressure (MAP) of 40 mmHg. DRP-RF or LR-RF was infused to restore MAP to 60 mmHg for 1 h (pre-hospital period), followed by blood re-infusion to a MAP = 70 mmHg (hospital period). In vivo 2-photon laser scanning microscopy over the parietal cortex was used to monitor microvascular blood flow, nicotinamide adenine dinucleotide (NADH) for tissue oxygen supply and mitochondrial oxidative stress (superoxide by i.v. hydroethidine [HEt], 1 mg/kg) for 4 h after TBI/HS, followed by Dil vascular painting during perfusion-fixation. TBI/HS decreased mCBF resulting in capillary microthrombosis and tissue hypoxia. Microvascular CBF and tissue oxygenation were significantly improved in the DRP-RF compared to the LR-RF treated group (p < 0.05). Reperfusion-induced oxidative stress, reflected by HEt fluorescence, was 32 ± 6% higher in LR-RF vs. DRP-RF (p < 0.05). Post-mortem whole-brain visualization of DiI painted vessels revealed multiple microthromboses in both hemispheres that were 29 ± 3% less in DRP-RF vs. LR-RF group (p < 0.05). Resuscitation after TBI/HS using DRP-RF effectively restores mCBF, reduces hypoxia, microthrombosis formation, and mitochondrial oxidative stress compared to conventional volume expansion with LR-RF.
Assuntos
Lesões Encefálicas Traumáticas , Estresse Oxidativo , Polímeros , Ressuscitação , Choque Hemorrágico , Trombose , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Polímeros/uso terapêutico , Ratos , Ressuscitação/métodos , Trombose/prevenção & controleRESUMO
Cerebrovascular reactivity (CVR) is a compensatory mechanism where blood vessels dilate in response to a vasodilatory stimulus, and is a biomarker of vascular reserve and microvascular health. Impaired CVR indicates microvascular hemodynamic dysfunction, which is implicated in traumatic brain injury (TBI) and associated with long-term neurological deficiency. Recently we have shown that anodal transcranial direct current stimulation (tDCS) caused prolonged dilatation of cerebral arterioles that increased brain microvascular flow and tissue oxygenation in traumatized mouse brain and was associated with neurologic improvement. Here we evaluate the effects of tDCS on impaired CVR and microvascular cerebral blood flow (mCBF) regulation after TBI. TBI was induced in mice by controlled cortical impact (CCI). Cortical microvascular tone, mCBF, and tissue oxygen supply (by nicotinamide adenine dinucleotide, NADH) were measured by two-photon laser scanning microscopy before and after anodal tDCS (0.1 mA/15 min). CVR and mCBF regulation were evaluated by measuring changes in arteriolar diameters and NADH during hypercapnia test before and after tDCS. Transient hypercapnia was induced by 60-s increase of CO2 concentration in the inhalation mixture to 10%. As previously, anodal tDCS dilated arterioles which increased arteriolar blood flow volume that led to an increase in capillary flow velocity and the number of functioning capillaries, thereby improving tissue oxygenation in both traumatized and sham animals. In sham mice, transient hypercapnia caused transient dilatation of cerebral arterioles with constant NADH, reflecting intact CVR and mCBF regulation. In TBI animals, arteriolar dilatation response to hypercapnia was diminished while the NADH level increased (tissue oxygen supply decreased), reflecting impaired CVR and mCBF regulation. Anodal tDCS enhanced reactivity in parenchymal arterioles in both groups (especially in TBI mice) and restored CVR thereby prevented the reduction in tissue oxygen supply during hypercapnia. CVR has been shown to be related to nitric oxide elevation due to nitric oxide synthases activation, which can be sensitive to the electrical field induced by tDCS.