Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(43): 16635-16646, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30171072

RESUMO

DNA-binding proteins from starved cells (Dps, EC: 1.16.3.1) have a variety of different biochemical activities such as DNA-binding, iron sequestration, and H2O2 detoxification. Most bacteria commonly feature one or two Dps enzymes, whereas the cyanobacterium Nostoc punctiforme displays an unusually high number of five Dps proteins (NpDps1-5). Our previous studies have indicated physiological differences, as well as cell-specific expression, among these five proteins. Three of the five NpDps proteins, NpDps1, -2, and -3, were classified as canonical Dps proteins. To further investigate their properties and possible importance for physiological function, here we characterized and compared them in vitro Nondenaturing PAGE, gel filtration, and dynamic light-scattering experiments disclosed that the three NpDps proteins exist as multimeric protein species in the bacterial cell. We also demonstrate Dps-mediated iron oxidation catalysis in the presence of H2O2 However, no iron oxidation with O2 as the electron acceptor was detected under our experimental conditions. In modeled structures of NpDps1, -2, and -3, protein channels were identified that could serve as the entrance for ferrous iron into the dodecameric structures. Furthermore, we could demonstrate pH-dependent DNA-binding properties for NpDps2 and -3. This study adds critical insights into the functions and stabilities of the three canonical Dps proteins from N. punctiforme and suggests that each of the Dps proteins within this bacterium has a specific biochemical property and function.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ferro/metabolismo , Nostoc/metabolismo , Multimerização Proteica , Proteínas de Bactérias/química , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Ferro/química , Oxirredução , Conformação Proteica
2.
Mol Microbiol ; 92(5): 1142-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24735432

RESUMO

Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer-Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane-spanning alpha-helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature-dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipídeos
3.
Environ Microbiol ; 16(3): 829-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23992552

RESUMO

Ferritin-like proteins constitute a remarkably heterogeneous protein family, including ferritins, bacterioferritins and Dps proteins. The genome of the filamentous heterocyst-forming cyanobacterium Nostoc punctiforme encodes five ferritin-like proteins. In the present paper, we report a multidimensional characterization of these proteins. Our phylogenetic and bioinformatics analyses suggest both structural and physiological differences among the ferritin-like proteins. The expression of these five genes responded differently to hydrogen peroxide treatment, with a significantly higher rise in transcript level for Npun_F3730 as compared with the other four genes. A specific role for Npun_F3730 in the cells tolerance against hydrogen peroxide was also supported by the inactivation of Npun_F3730, Npun_R5701 and Npun_R6212; among these, only the ΔNpun_F3730 strain showed an increased sensitivity to hydrogen peroxide compared with wild type. Analysis of promoter-GFP reporter fusions of the ferritin-like genes indicated that Npun_F3730 and Npun_R5701 were expressed in all cell types of a diazotrophic culture, while Npun_F6212 was expressed specifically in heterocysts. Our study provides the first comprehensive analysis combining functional differentiation and cellular specificity within this important group of proteins in a multicellular cyanobacterium.


Assuntos
Ferritinas/metabolismo , Nostoc/genética , Nostoc/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Ferritinas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/farmacologia , Ferro/metabolismo , Nostoc/classificação , Nostoc/efeitos dos fármacos , Oxidantes/farmacologia , Filogenia , Alinhamento de Sequência
4.
Mol Microbiol ; 79(4): 1077-88, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21299655

RESUMO

Heterocyst-forming cyanobacteria grow as filaments of cells (trichomes) in which, under nitrogen limitation, two interdependent cell types, the vegetative cells performing oxygenic photosynthesis and the nitrogen-fixing heterocysts, exchange metabolites and regulatory compounds. SepJ is a protein conspicuously located at the cell poles in the intercellular septa of the filaments that has three well-defined domains: an N-terminal coiled-coil domain, a central linker and a C-terminal permease domain. Mutants of Anabaena sp. strain PCC 7120 carrying SepJ proteins with specific deletions showed that, whereas the linker domain is dispensable, the coiled-coil domain is required for polar localization of SepJ, filament integrity, normal intercellular transfer of small fluorescent tracers and diazotrophy. An Anabaena strain carrying the SepJ protein from the filamentous, non-heterocyst-forming cyanobacterium Trichodesmium erythraeum, which lacks the linker domain, made long filaments in the presence of combined nitrogen but fragmented extensively under nitrogen deprivation and did not grow diazotrophically. In contrast, a chimera made of the Trichodesmium coiled-coil domain and the Anabaena permease allowed heterocyst differentiation and diazotrophic growth. Thus, SepJ provides filamentous cyanobacteria with a cell-cell anchoring function, but the permease domain has evolved in heterocyst formers to provide intercellular molecular exchange functions required for diazotrophy.


Assuntos
Anabaena/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Fenótipo , Deleção de Sequência
5.
EMBO J ; 27(9): 1299-308, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18388860

RESUMO

Heterocyst-forming filamentous cyanobacteria are true multicellular prokaryotes, in which heterocysts and vegetative cells have complementary metabolism and are mutually dependent. The mechanism for metabolite exchange between cells has remained unclear. To gain insight into the mechanism and kinetics of metabolite exchange, we introduced calcein, a 623-Da fluorophore, into the Anabaena cytoplasm. We used fluorescence recovery after photobleaching to quantify rapid diffusion of this molecule between the cytoplasms of all the cells in the filament. This indicates nonspecific intercellular channels allowing the movement of molecules from cytoplasm to cytoplasm. We quantify rates of molecular exchange as filaments adapt to diazotrophic growth. Exchange among vegetative cells becomes faster as filaments differentiate, becoming considerably faster than exchange with heterocysts. Slower exchange is probably a price paid to maintain a microaerobic environment in the heterocyst. We show that the slower exchange is partly due to the presence of cyanophycin polar nodules in heterocysts. The phenotype of a null mutant identifies FraG (SepJ), a membrane protein localised at the cell-cell interface, as a strong candidate for the channel-forming protein.


Assuntos
Cianobactérias/citologia , Cianobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cianobactérias/genética , Fluoresceínas/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes/metabolismo , Microscopia Confocal
6.
Biomolecules ; 12(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35883428

RESUMO

Synechococcus sp. PCC 11901 reportedly demonstrates the highest, most sustained growth of any known cyanobacterium under optimized conditions. Due to its recent discovery, our knowledge of its biology, including the factors underlying sustained, fast growth, is limited. Furthermore, tools specific for genetic manipulation of PCC 11901 are not established. Here, we demonstrate that PCC 11901 shows faster growth than other model cyanobacteria, including the fast-growing species Synechococcuselongatus UTEX 2973, under optimal growth conditions for UTEX 2973. Comparative genomics between PCC 11901 and Synechocystis sp. PCC 6803 reveal conservation of most metabolic pathways but PCC 11901 has a simplified electron transport chain and reduced light harvesting complex. This may underlie its superior light use, reduced photoinhibition, and higher photosynthetic and respiratory rates. To aid biotechnology applications, we developed a vitamin B12 auxotrophic mutant but were unable to generate unmarked knockouts using two negative selectable markers, suggesting that recombinase- or CRISPR-based approaches may be required for repeated genetic manipulation. Overall, this study establishes PCC 11901 as one of the most promising species currently available for cyanobacterial biotechnology and provides a useful set of bioinformatics tools and strains for advancing this field, in addition to insights into the factors underlying its fast growth phenotype.


Assuntos
Synechococcus , Synechocystis , Biotecnologia , Redes e Vias Metabólicas , Fotossíntese , Synechococcus/genética , Synechococcus/metabolismo , Synechocystis/genética
7.
mSphere ; 6(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441411

RESUMO

In filamentous heterocyst-forming (N2-fixing) cyanobacteria, septal junctions join adjacent cells, mediating intercellular communication, and are thought to traverse the septal peptidoglycan through nanopores. Fluorescence recovery after photobleaching (FRAP) analysis with the fluorescent marker calcein showed that cultures of Anabaena sp. strain PCC 7120 grown in the presence of combined nitrogen contained a substantial fraction of noncommunicating cells (58% and 80% of the tested vegetative cells in nitrate- and ammonium-grown cultures, respectively), whereas cultures induced for nitrogen fixation contained far fewer noncommunicating cells (16%). A single filament could have communicating and noncommunicating cells. These observations indicate that all (or most of) the septal junctions in a cell can be coordinately regulated and are coherent with the need for intercellular communication, especially under diazotrophic conditions. Consistently, intercellular exchange was observed to increase in response to N deprivation and to decrease rapidly in response to the presence of ammonium in the medium or to nitrate assimilation. Proteins involved in the formation of septal junctions have been identified in Anabaena and include SepJ, FraC, and FraD. Here, we reevaluated rates of intercellular transfer of calcein and the number of nanopores in mutants lacking these proteins and found a strong positive correlation between the two parameters only in cultures induced for nitrogen fixation. Thus, whereas the presence of a substantial number of noncommunicating cells appears to impair the correlation, data obtained in diazotrophic cultures support the idea that the nanopores are the structures that hold the septal junctions.IMPORTANCE Multicellularity is found in bacteria as well as in eukaryotes, and the filamentous heterocyst-forming (N2-fixing) cyanobacteria represent a simple and ancient paradigm of multicellular organisms. Multicellularity generally involves cell-cell adhesion and communication. The cells in the cyanobacterial filaments are joined by proteinaceous septal junctions that mediate molecular diffusion. The septal junctions traverse the septal peptidoglycan, which bears holes termed nanopores. Our results show that the septal junctions can be coordinately regulated in a cell and emphasize the relationship between septal junctions and nanopores to build intercellular communication structures, which are essential for the multicellular behavior of heterocyst-forming cyanobacteria.


Assuntos
Anabaena/citologia , Anabaena/metabolismo , Citoesqueleto/metabolismo , Fixação de Nitrogênio , Anabaena/genética , Proteínas de Bactérias/genética , Citoesqueleto/ultraestrutura , Fluoresceínas/metabolismo , Regulação Bacteriana da Expressão Gênica , Microscopia Eletrônica de Transmissão , Nanoporos
8.
Synth Biol (Oxf) ; 7(1): ysac002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35350192

RESUMO

Practical delivery of Findable, Accessible, Reusable and Interoperable principles for research data management requires expertise, time resource, (meta)data standards and formats, software tools and public repositories. The Synthetic Biology Open Language (SBOL2) metadata standard enables FAIR sharing of the designs of synthetic biology constructs, notably in the repository of the SynBioHub platform. Large libraries of such constructs are increasingly easy to produce in practice, for example, in DNA foundries. However, manual curation of the equivalent libraries of designs remains cumbersome for a typical lab researcher, creating a barrier to data sharing. Here, we present a simple tool SynBio2Easy, which streamlines and automates operations on multiple Synthetic Biology Open Language (SBOL) designs using Microsoft Excel® tables as metadata inputs. The tool provides several utilities for manipulation of SBOL documents and interaction with SynBioHub: for example, generation of a library of plasmids based on an original design template, bulk deposition into SynBioHub, or annotation of existing SBOL component definitions with notes and authorship information. The tool was used to generate and deposit a collection of 3661 cyanobacterium Synechocystis plasmids into the public SynBioHub repository. In the process of developing the software and uploading these data, we evaluated some aspects of the SynBioHub platform and SBOL ecosystem, and we discuss proposals for improvement that could benefit the user community. With software such as SynBio2Easy, we aim to deliver a user-driven tooling to make FAIR a reality at all stages of the project lifecycle in synthetic biology research. Graphical Abstract.

9.
J Bacteriol ; 192(18): 4535-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20581203

RESUMO

Diffusion in the bacterial cytoplasm is regarded as the primary method of intracellular protein movement and must play a major role in controlling the rates of cell processes. A number of recent studies have used green fluorescent protein (GFP) tagging and fluorescence microscopy to probe the movement and distribution of proteins in the bacterial cytoplasm. However, the dynamic behavior of indigenous proteins must be controlled by a complex mixture of specific interactions, combined with the basic physical constraints imposed by the viscosity and macromolecular crowding of the cytoplasm. These factors are difficult to unravel in studies with indigenous proteins. To what extent the addition of a GFP tag might affect the movement of a protein through the cytoplasm has also remained unknown. To resolve these problems, we have carried out a systematic study of the size dependence of protein diffusion coefficients in the Escherichia coli cytoplasm, using engineered GFP multimers (from 2 to 6 covalently linked GFP molecules). Diffusion coefficients were measured using confocal fluorescence recovery after photobleaching (FRAP). At least up to 110 kDa (four linked GFP molecules), the diffusion coefficient varies with size roughly as would be predicted from the Einstein-Stokes equation for a classical (Newtonian) fluid. Thus, protein diffusion coefficients are predictable over this range. GFP tagging of proteins has little impact on the diffusion coefficient over this size range and therefore need not significantly perturb protein movement. Two indigenous E. coli proteins were used to show that their specific interactions within the cell are the main controllers of the diffusion rate.


Assuntos
Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/genética
10.
Curr Biol ; 28(13): 2136-2144.e7, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29937351

RESUMO

Cell wall appositions (CWAs) are produced reactively by the plant immune system to arrest microbial invasion through the local inversion of plant cell growth. This process requires the controlled invagination of the plasma membrane (PM) in coordination with the export of barrier material to the volume between the plant PM and cell wall. Plant actin dynamics are essential to this response, but it remains unclear how exocytosis and the cytoskeleton are linked in space and time to form functional CWAs. Here, we show that actin-dependent trafficking to immune response sites of Arabidopsis thaliana delivers membrane-integrated FORMIN4, which in turn contributes to local cytoskeletal dynamics. Total internal reflection fluorescence (TIRF) microscopy combined with controlled induction of FORMIN4-GFP expression reveals a dynamic population of vesicular bodies that accumulate to form clusters at the PM through an actin-dependent process. Deactivation of FORMIN4 and its close homologs partially compromises subsequent defense and alters filamentous actin (F-actin) distribution at mature CWAs. The localization of FORMIN4 is stable and segregated from the dynamic traffic of the endosomal network. Moreover, the tessellation of FORMIN4 at the PM with meso-domains of PEN3 reveals a fine spatial segregation of destinations for actin-dependent immunity cargo. Together, our data suggest a model where FORMIN4 is a spatial feedback element in a multi-layered, temporally defined sequence of cytoskeletal response. This positional feedback makes a significant contribution to the distribution of actin filaments at the dynamic CWA boundary and to the outcomes of pre-invasion defense.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas dos Microfilamentos/genética , Imunidade Vegetal/imunologia , Actinas/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Citoesqueleto/metabolismo , Forminas , Proteínas dos Microfilamentos/metabolismo , Transporte Proteico
11.
FEMS Microbiol Ecol ; 61(1): 65-73, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17466026

RESUMO

Acaryochloris marina strains have been isolated from several varied locations and habitats worldwide demonstrating a diverse and dynamic ecology. In this study, the whole cell photophysiologies of strain MBIC11017, originally isolated from a colonial ascidian, and the free-living epilithic strain CCMEE5410 are analyzed by absorbance and fluorescence spectroscopy, laser scanning confocal microscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and subsequent protein analysis. We demonstrate pigment adaptation in MBIC11017 and CCMEE5410 under different light regimes. We show that the higher the incident growth light intensity for both strains, the greater the decrease in their chlorophyll d content. However, the strain MBIC11017 loses its phycobiliproteins relative to its chlorophyll d content when grown at light intensities of 40 microE m(-2) s(-1) without shaking and 100 microE m(-2) s(-1) with shaking. We also conclude that phycobiliproteins are absent in the free-living strain CCMEE5410.


Assuntos
Adaptação Fisiológica , Clorofila/metabolismo , Cianobactérias/efeitos da radiação , Fotossíntese/efeitos da radiação , Ficobiliproteínas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Clorofila/efeitos da radiação , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Ecossistema , Microscopia Confocal , Dados de Sequência Molecular , Fotossíntese/fisiologia , Ficobiliproteínas/efeitos da radiação , Espectrometria de Fluorescência , Espectrofotometria , Simbiose/fisiologia
12.
FEMS Microbiol Lett ; 362(6)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25663155

RESUMO

In cyanobacteria, DNA-binding proteins from starved cells (Dps) play an important role in the cellular response to oxidative and nutritional stresses. In this study, we have characterized the cell-type specificity and the promoter regions of two orthologous dps genes, Npun_R5799 in Nostoc punctiforme and alr3808 in Anabaena sp. PCC 7120. A transcriptional start site (TSS), identical in location to the previously identified proximal TSS of alr3808, was identified for Npun_R5799 under both combined nitrogen supplemented and N2-fixing growth conditions. However, only alr3808 was also transcribed from a second distal TSS. Sequence homologies suggest that the promoter region containing the distal TSS is not conserved upstream of orthologous genes among heterocyst-forming cyanobacteria. The analysis of promoter GFP-reporter strains showed a different role in governing cell-type specificity between the proximal and distal promoter of alr3808. We here confirmed the heterocyst specificity of the distal promoter of alr3808 and described a very early induction of its expression during proheterocyst differentiation. In contrast, the complete promoters of both genes were active in all cells. Even though Npun_R5799 and alr3808 are orthologs, the regulation of their respective expression differs, indicating distinctions in the function of these cyanobacterial Dps proteins depending on the strain and cell type.


Assuntos
Anabaena/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Nostoc/genética , Regiões Promotoras Genéticas , Anabaena/fisiologia , Proteínas de Ligação a DNA/metabolismo , Genes Bacterianos , Nitrogênio/metabolismo , Homologia de Sequência , Sítio de Iniciação de Transcrição
13.
PLoS One ; 6(5): e19625, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21625427

RESUMO

BACKGROUND: In cyanobacteria the photosystems are localised to, and maintained in, specialist membranes called the thylakoids. The mechanism driving the biogenesis of the thylakoid membranes is still an open question, with only two potential biogenesis factors, Vipp1 and Alb3 currently identified. METHODOLOGY/PRINCIPAL FINDINGS: We generated a slr1768 knockout using the pGEM T-easy vector and REDIRECT. By comparing growth and pigment content (chlorophyll a fluoresence) of the Δslr1768 mutant with the wild-type, we found that Δslr1768 has a conditional phenotype; specifically under high light conditions (130 µmol m(-2) s(-1)) thylakoid biogenesis is disrupted leading to cell death on a scale of days. The thylakoids show considerable disruption, with loss of both structure and density, while chlorophyll a density decreases with the loss of thylakoids, although photosynthetic efficiency is unaffected. Under low light (30 µmol m(-2) s(-1)) the phenotype is significantly reduced, with a growth rate similar to the wild-type and only a low frequency of cells with evident thylakoid disruption. CONCLUSIONS/SIGNIFICANCE: This is the first example of a gene that affects the maintenance of the thylakoid membranes specifically under high light, and which displays a phenotype dependent on light intensity. Our results demonstrate that Slr1768 has a leading role in acclimatisation, linking light damage with maintenance of the thylakoids.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/fisiologia , Clorofila/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fotossíntese/fisiologia , Synechocystis/metabolismo , Tilacoides/fisiologia , Aclimatação , Clorofila A , Luz , Synechocystis/genética
14.
FEBS J ; 276(1): 232-43, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19049517

RESUMO

The twin arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane. In Gram-negative bacteria, membrane-bound TatABC subunits are all essential for activity, whereas Gram-positive bacteria usually contain only TatAC subunits. In Bacillus subtilis, two TatAC-type systems, TatAdCd and TatAyCy, operate in parallel with different substrate specificities. Here, we show that they recognize similar signal peptide determinants. Both systems translocate green fluorescent protein fused to three distinct Escherichia coli Tat signal peptides, namely DmsA, AmiA and MdoD, and mutagenesis of the DmsA signal peptide confirmed that both Tat pathways recognize similar targeting determinants within Tat signals. Although another E. coli Tat substrate, trimethylamine N-oxide reductase, was translocated by TatAdCd but not by TatAyCy, we conclude that these systems are not predisposed to recognize only specific Tat signal peptides, as suggested by their narrow substrate specificities in B. subtilis. We also analysed complexes involved in the second Tat pathway in B. subtilis, TatAyCy. This revealed a discrete TatAyCy complex together with a separate, homogeneous, approximately 200 kDa TatAy complex. The latter complex differs significantly from the corresponding E. coli TatA complexes, pointing to major structural differences between Tat complexes from Gram-negative and Gram-positive organisms. Like TatAd, TatAy is also detectable in the form of massive cytosolic complexes.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Produtos do Gene tat/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Bactérias Gram-Negativas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Transporte Proteico , Especificidade por Substrato
15.
J Mol Biol ; 375(3): 661-72, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18036542

RESUMO

The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, it is encoded by tatABC genes and the system recognizes substrates bearing signal peptides with a conserved twin-arginine motif. Most Gram-positive organisms lack a tatB gene, indicating major differences in organisation and/or mechanism. Here, we have characterized the essential targeting determinants that are recognized by a Bacillus subtilis TatAC-type system, TatAdCd. Substitution by lysine of either of the twin-arginine residues in the TorA signal peptide can be tolerated, but the presence of twin-lysine residues blocks export completely. We show that additional determinants can be as important as the twin-arginine motif. Replacement of the -1 serine by alanine, in either the TorA or DmsA signal peptide, almost blocks export by either the B. subtilis TatAdCd or Escherichia coli TatABC systems, firmly establishing the importance of this -1 residue in these signal peptides. Surprisingly, the +2 leucine in the DmsA signal peptide (sequence SRRGLV) appears to play an equally important role and substitution by alanine or phenylalanine blocks export by both the B. subtilis and E. coli systems. These data identify three distinct determinants, whose importance varies depending on the signal peptide in question. The data also show that the B. subtilis TatAdCd and E. coli TatABC systems recognize very similar determinants within their target peptides, and exhibit surprisingly similar responses to mutations within these determinants.


Assuntos
Arginina/genética , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Sinais Direcionadores de Proteínas/genética , Alanina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Consenso , Proteínas de Fluorescência Verde/metabolismo , Lisina/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fenilalanina/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Especificidade da Espécie , Especificidade por Substrato
16.
J Bacteriol ; 188(10): 3442-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16672597

RESUMO

Surprisingly little is known about the physical environment inside a prokaryotic cell. Knowledge of the rates at which proteins and other cell components can diffuse is crucial for the understanding of a cell as a physical system. There have been numerous measurements of diffusion coefficients in eukaryotic cells by using fluorescence recovery after photobleaching (FRAP) and related techniques. Much less information is available about diffusion coefficients in prokaryotic cells, which differ from eukaryotic cells in a number of significant respects. We have used FRAP to observe the diffusion of green fluorescent protein (GFP) in cells of Escherichia coli elongated by growth in the presence of cephalexin. GFP was expressed in the cytoplasm, exported into the periplasm using the twin-arginine translocation (Tat) system, or fused to an integral plasma membrane protein (TatA). We show that TatA-GFP diffuses in the plasma membrane with a diffusion coefficient comparable to that of a typical eukaryotic membrane protein. A previous report showed a very low rate of protein diffusion in the E. coli periplasm. However, we measured a GFP diffusion coefficient only slightly smaller in the periplasm than that in the cytoplasm, showing that both cell compartments are relatively fluid environments.


Assuntos
Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/farmacocinética , Membrana Celular/fisiologia , Cefalexina/farmacologia , Difusão , Escherichia coli/ultraestrutura , Cinética , Microscopia Confocal , Proteínas Recombinantes/farmacocinética
17.
J Biol Chem ; 280(18): 17961-8, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15728576

RESUMO

The twin arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane. Two primary Tat complexes have been identified, comprising TatABC or TatA multimers, which may interact at the point of translocation. We have analyzed green/cyan/yellow fluorescent protein (XFP) fusions to each of the Tat subunits. We show that the TatB and TatC fusions are active and incorporated into purified TatABC complexes. Proteolytic clipping of the TatA-XFP fusion precludes a definitive conclusion regarding activity, but we do find that the full fusion protein is preferentially incorporated into the TatABC complex. A previous study has proposed that TatB and possibly TatC are localized at the cell poles, whereas TatA is distributed more uniformly throughout the plasma membrane. Here, we likewise show that TatA-XFP is primarily distributed around the periphery of the cell. However, whereas much of the TatB-XFP is found at the poles, quantitative imaging studies show that approximately half of the protein is uniformly distributed in the plasma membrane. Moreover, we show that the bulk of TatC-XFP is detected as a halo around the cells, in some cases as punctate areas that are much smaller than those occupied by TatB-green fluorescent protein (GFP), indicating a uniform distribution. No evidence for a polar localization of TatC-GFP was obtained. Although TatC-GFP is found correctly complexed with TatB, a high proportion of TatB-GFP is not linked to TatC, and we propose that this "free" TatB forms unphysiological assemblies, possibly because it is synthesized in excess. Since TatC is invariably complexed with TatB in wild-type complexes, the combined data demonstrate that TatABC complexes are uniformly distributed throughout the plasma membrane. The significance of the punctate TatA/B/C-GFP is unclear; fluorescence recovery after photobleaching measurements show that these pools of proteins are immobile, whereas nonaggregated proteins are highly mobile in the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Arginina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Movimento Celular/fisiologia , Escherichia coli/citologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Subunidades Proteicas/fisiologia , Transporte Proteico/fisiologia
18.
J Biol Chem ; 279(53): 55792-800, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15498761

RESUMO

YidC/OxaI play essential roles in the insertion of a wide range of membrane proteins in Eschericha coli and mitochondria, respectively. In contrast, the chloroplast thylakoid homolog Albino3 (Alb3) facilitates the insertion of only a specialized subset of proteins, and the vast majority insert into thylakoids by a pathway that is so far unique to chloroplasts. In this study, we have analyzed the role of Alb3 in the cyanobacterium Synechocystis sp. PCC6803, which contains internal thylakoids that are similar in some respects to those of chloroplasts. The single alb3 gene (slr1471) was disrupted by the introduction of an antibiotic cassette, and photoautotrophic growth resulted in the generation of a merodiploid species (but not full segregation), indicating an essential role for Alb3 in maintaining the photosynthetic apparatus. Thylakoid organization is lost under these conditions, and the levels of photosynthetic pigments fall to approximately 40% of wild-type levels. Photosynthetic electron transport and oxygen evolution are reduced by a similar extent. Growth on glucose relieves the selective pressure to maintain photosynthetic competence, and under these conditions, the cells become completely bleached, again indicating that Alb3 is essential for thylakoid biogenesis. Full segregation could not be achieved under any growth regime, strongly suggesting that the slr1471 open reading frame is essential for cell viability.


Assuntos
Proteínas de Arabidopsis/fisiologia , Cianobactérias/metabolismo , Synechocystis/metabolismo , Proteínas de Arabidopsis/metabolismo , Southern Blotting , Membrana Celular/metabolismo , Clorofila/química , Cloroplastos/metabolismo , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Glucose/metabolismo , Luz , Microscopia Confocal , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Modelos Genéticos , Mutação , Fases de Leitura Aberta , Oxigênio/metabolismo , Fotossíntese , Plasmídeos/metabolismo , Pressão , Tilacoides/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA