Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(15): e23856, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092913

RESUMO

Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.


Assuntos
Eritrócitos , Ácido N-Acetilneuramínico , Vírus da Doença de Newcastle , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/metabolismo , Eritrócitos/parasitologia , Eritrócitos/metabolismo , Animais , Ácido N-Acetilneuramínico/metabolismo , Humanos , Plasmodium yoelii/metabolismo , Camundongos , Proteína HN/metabolismo , Malária/parasitologia , Malária/metabolismo
2.
Biomed Chromatogr ; 37(1): e5527, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36250786

RESUMO

Newcastle disease virus (NDV), belonging to the species avian orthoavulavirus 1, genus Orthoavulavirus, and family Paramyxoviridae, is responsible for Newcastle disease in poultry and other avian species. It has shown significant potential as an oncolytic virus and as a vector for vaccine delivery. NDV from infected biological serum is usually isolated or purified using density gradient ultracentrifugation. However, it has many disadvantages, including the fact that it is time consuming and can process only a limited quantity of sample at one time. In our study, native agarose gel electrophoresis and dynamic light scattering (DLS) analysis showed that NDV carried a net negative surface charge. Thus, we purified the virus using a HiTrap Q Sepharose Fast Flow anion exchange column with salt elution. Hemagglutination assay and plaque assay showed that the procedure yielded high-purity NDV particles with a recovery of more than 80%, and the process was fast and simple. The purity of the virus was confirmed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The hydrodynamic volume and 'dry state' diameter of the purified NDV were analyzed using dynamic light scattering and transmission electron microscopy and were to be in the range of 200-300 nm. The viruses did not exhibit any deviation from their known physical properties. The genome of the virus was also detected by amplifying a 423-bp region using reverse transcription-polymerase chain reaction. Our study confirmed that NDV could be effectively purified using an anion exchange column. In addition, the procedure could be easily upscaled or downscaled based on the experimental requirements.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Doença de Newcastle/prevenção & controle , Cromatografia , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA