Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(40): 14308-14327, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751568

RESUMO

We have studied the effect of platinum underlayer for two deposited thicknesses on the microstructure, crystalline quality, morphology, chemical composition, and magnetic properties as well as magnetic domain formation of BaFe12O19 (BaM) grown on YSZ(111) by pulsed laser deposition (PLD). We found that PLD platinum deposited with a thickness of 25 nm cannot withstand the dewetting phenomenon occurring during the subsequent BaM layer growth. A smooth and continuous Pt underlayer that possesses a sharp interface and omits the intermixing between the BaM and substrate was successfully achieved for a deposited Pt film thickness of 75 nm. Independent of the thickness of the deposited Pt layer, the c-axis orientation as well as coercivity Hc and the anisotropy HA fields were significantly improved due to a remarkable improvement of lattice mismatch in comparison with the BaM layer grown without a Pt underlayer on YSZ(111). By applying high-resolution X-ray diffraction, scanning and transmission electron microscopy (SEM/TEM), and atomically resolved scanning TEM imaging combined with energy-dispersive X-ray spectroscopy, as well as atomic and magnetic force microscopy, a comprehensive investigation of both structure and chemical composition of the deposited BaM films and their interfacial regions was performed. This study aimed to correlate the enhancement of the overall magnetic properties and of the local spin magnetic domain orientation with the modification of BaM microstructure and chemical composition at the nanometer scale due to the Pt underlayer. Finally, we attempted to understand the mechanisms that control the magnetic properties of these BaM films in order to be able to tailor them.

2.
Langmuir ; 37(2): 734-749, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33406840

RESUMO

Optimizing and monitoring the growth conditions of Pt films, often used as bottom electrodes in multiferroic material systems, represents a highly relevant issue that is of importance for controlling the crystalline quality and performance of ferroelectric oxides such as, e.g. LuFeO3. We performed a time-resolved monitoring of the growth and morphology of Pt films during pulsed laser deposition (PLD) in dependence on the grown film effective thickness and on the growth temperature Tg using in situ grazing incidence small-angle X-ray scattering (GISAXS). Through real-time analysis and modeling of GISAXS patterns, we could fully characterize the influence of Tg on the morphology and on the growth kinetics of the Pt layers. Consequently, critical and characteristic effective thicknesses for the transitions nucleation phase (I)/coalescence phase (II) and coalescence phase (II)/coarsening phase (III) could be determined. In combination with complementary microscopic imaging and chemical mapping via combined SEM/EDXS, we demonstrate the occurrence of a morphological progression in the Pt PLD-grown Pt films, changing from grains at room temperature to a 3D-island morphology at 300 °C, further to a hole-free structure at 500 °C, and finally to a channel structure for 700 and 900 °C. The film topography, as characterized by atomic force microscopy (AFM), favors the PLD growth of Pt layers at temperatures beyond 700 °C where the film is homogeneous, continuous, and hole-free with a flat and smooth surface. The double dependency of the percolation transition on the film effective thickness and on the growth temperature has been established by measuring the electrical conductivity.

3.
Nanomaterials (Basel) ; 14(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921917

RESUMO

The hexagonal ferrite h-YbFeO3 grown on YSZ(111) by pulsed laser deposition is foreseen as a promising single multiferroic candidate where ferroelectricity and antiferromagnetism coexist for future applications at low temperatures. We studied in detail the microstructure as well as the temperature dependence of the magnetic properties of the devices by comparing the heterostructures grown directly on YSZ(111) (i.e., YbPt_Th0nm) with h-YbFeO3 films deposited on substrates buffered with platinum Pt/YSZ(111) and in dependence on the Pt underlayer film thickness (i.e., YbPt_Th10nm, YbPt_Th40nm, YbPt_Th55nm, and YbPt_Th70nm). The goal was to deeply understand the importance of the crystal quality and morphology of the Pt underlayer for the h-YbFeO3 layer crystal quality, surface morphology, and the resulting physical properties. We demonstrate the relevance of homogeneity, continuity, and hillock formation of the Pt layer for the h-YbFeO3 microstructure in terms of crystal structure, mosaicity, grain boundaries, and defect distribution. The findings of transmission electron microscopy and X-ray diffraction reciprocal space mapping characterization enable us to conclude that an optimum film thickness for the Pt bottom electrode is ThPt = 70 nm, which improves the crystal quality of h-YbFeO3 films grown on Pt-buffered YSZ(111) in comparison with h-YbFeO3 films grown on YSZ(111) (i.e., YbPt_Th0nm). The latter shows a disturbance in the crystal structure, in the up-and-down atomic arrangement of the ferroelectric domains, as well as in the Yb-Fe exchange interactions. Therefore, an enhancement in the remanent and in the total magnetization was obtained at low temperatures below 50 K for h-YbFeO3 films deposited on Pt-buffered substrates Pt/YSZ(111) when the Pt underlayer reached ThPt = 70 nm.

4.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668205

RESUMO

The structure and the chemical composition of individual layers as well as of interfaces belonging to the two heterostructures M1 (BaFe12O19/YbFeO3/YSZ) and M2 (YbFeO3/BaFe12O19/YSZ) grown by pulsed laser deposition on yttria-stabilized zirconia (YSZ) substrates are deeply characterized by using a combination of methods such as high-resolution X-ray diffraction, transmission electron microscopy (TEM), and atomic-resolution scanning TEM with energy-dispersive X-ray spectroscopy. The temperature-dependent magnetic properties demonstrate two distinct heterostructures with different coercivity, anisotropy fields, and first anisotropy constants, which are related to the defect concentrations within the individual layers and to the degree of intermixing at the interface. The heterostructure with the stacking order BaFe12O19/YbFeO3, i.e., M1, exhibits a distinctive interface without any chemical intermixture, while an Fe-rich crystalline phase is observed in M2 both in atomic-resolution EDX maps and in mass density profiles. Additionally, M1 shows high c-axis orientation, which induces a higher anisotropy constant K1 as well as a larger coercivity due to a high number of phase boundaries. Despite the existence of a canted antiferromagnetic/ferromagnetic combination (T < 140 K), both heterostructures M1 and M2 do not reveal any detectable exchange bias at T = 50 K. Additionally, compressive residual strain on the BaM layer is found to be suppressing the ferromagnetism, thus reducing the Curie temperature (Tc) in the case of M1. These findings suggest that M1 (BaFe12O19/YbFeO3/YSZ) is suitable for magnetic storage applications.

5.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38668219

RESUMO

The morphology and crystal structure of Pt films grown by pulsed laser deposition (PLD) on yttria-stabilized zirconia (YSZ)at high temperatures Tg = 900 °C was studied for four different film thicknesses varying between 10 and 70 nm. During the subsequent growth of the capping layer, the thermal stability of the Pt was strongly influenced by the Pt film's thickness. Furthermore, these later affected the film morphology, the crystal structure and hillocks size, and distribution during subsequent growth at Tg = 900 °C for a long duration. The modifications in the morphology as well as in the structure of the Pt film without a capping layer, named also as the as-grown and encapsulated layers in the bilayer system, were examined by a combination of microscopic and scattering methods. The increase in the thickness of the deposited Pt film brought three competitive phenomena into occurrence, such as 3D-2D morphological transition, dewetting, and hillock formation. The degree of coverage, film continuity, and the crystal quality of the Pt film were significantly improved by increasing the deposition time. An optimum Pt film thickness of 70 nm was found to be suitable for obtaining a hillock-free Pt bottom electrode which also withstood the dewetting phenomena revealed during the subsequent growth of capping layers. This achievement is crucial for the deposition of functional bottom electrodes in ferroelectric and multiferroic heterostructure systems.

6.
Sci Rep ; 12(1): 5647, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383221

RESUMO

Atomistic processes during pulsed-laser deposition (PLD) growth influence the physical properties of the resulting films. We investigated the PLD of epitaxial layers of hexagonal LuFeO[Formula: see text] by measuring the X-ray diffraction intensity in the quasiforbidden reflection 0003 in situ during deposition. From measured X-ray diffraction intensities we determined coverages of each layer and studied their time evolution which is described by scaling exponent [Formula: see text] directly connected to the surface roughness. Subsequently we modelled the growth using kinetic Monte Carlo simulations. While the experimentally obtained scaling exponent [Formula: see text] decreases with the laser frequency, the simulations provided the opposite behaviour. We demonstrate that the increase of the surface temperature caused by impinging ablated particles satisfactorily explains the recorded decrease in the scaling exponent with the laser frequency. This phenomena is often overlooked during the PLD growth.

7.
Micron ; 146: 103071, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33892437

RESUMO

Mono- and few-layer MoS2 were studied by three-dimensional electron diffraction (3D ED) showing distinctly different symmetry for crystals consisting of odd and even number of layers. Experimentally obtained intensity distributions along the relrods match qualitatively kinematically simulated data. Our findings allow to differentiate unambiguously between 1-, 2-, 3- 4- and 5-layers MoS2 crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA