Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 107(12): 3984-3995, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37430480

RESUMO

The drought-resilient crop sorghum (Sorghum bicolor [L.] Moench) is grown worldwide for multiple uses, including forage or potential lignocellulosic bioenergy feedstock. A major impediment to biomass yield and quality are the pathogens Fusarium thapsinum and Macrophomina phaseolina, which cause Fusarium stalk rot and charcoal rot, respectively. These fungi are more virulent with abiotic stresses such as drought. Monolignol biosynthesis plays a critical role in plant defense. The genes Brown midrib (Bmr)6, Bmr12, and Bmr2 encode the monolignol biosynthesis enzymes cinnamyl alcohol dehydrogenase, caffeic acid O-methyltransferase, and 4-coumarate:CoA ligase, respectively. Plant stalks from lines overexpressing these genes and containing bmr mutations were screened for pathogen responses with controlled adequate or deficit watering. Additionally, near-isogenic bmr12 and wild-type lines in five backgrounds were screened for response to F. thapsinum with adequate and deficit watering. All mutant and overexpression lines were no more susceptible than corresponding wild-type under both watering conditions. The bmr2 and bmr12 lines, near-isogenic to wild-type, had significantly shorter mean lesion lengths (were more resistant) than RTx430 wild-type when inoculated with F. thapsinum under water deficit. Additionally, bmr2 plants grown under water deficit had significantly smaller mean lesions when inoculated with M. phaseolina than under adequate-water conditions. When well-watered, bmr12 in cultivar Wheatland and one of two Bmr2 overexpression lines in RTx430 had shorter mean lesion lengths than corresponding wild-type lines. This research demonstrates that modifying monolignol biosynthesis for increased usability may not impair plant defenses but can even enhance resistance to stalk pathogens under drought conditions.


Assuntos
Ascomicetos , Sorghum , Sorghum/genética , Sorghum/microbiologia , Grão Comestível , Mutação
2.
Mol Plant Microbe Interact ; 33(1): 108-122, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31687913

RESUMO

Wheat streak mosaic virus (WSMV) and triticum mosaic virus (TriMV) are economically important viruses of wheat (Triticum aestivum L.), causing significant yield losses in the Great Plains region of the United States. These two viruses are transmitted by wheat curl mites, which often leads to mixed infections with synergistic interaction in grower fields that exacerbates yield losses. Development of dual-resistant wheat lines would provide effective control of these two viruses. In this study, a genetic resistance strategy employing an RNA interference (RNAi) approach was implemented by assembling a hairpin element composed of a 202-bp (404-bp in total) stem sequence of the NIb (replicase) gene from each of WSMV and TriMV in tandem and of an intron sequence in the loop. The derived RNAi element was cloned into a binary vector and was used to transform spring wheat genotype CB037. Phenotyping of T1 lineages across eight independent transgenic events for resistance revealed that i) two of the transgenic events provided resistance to WSMV and TriMV, ii) four events provided resistance to either WSMV or TriMV, and iii) no resistance was found in two other events. T2 populations derived from the two events classified as dual-resistant were subsequently monitored for stability of the resistance phenotype through the T4 generation. The resistance phenotype in these events was temperature-dependent, with a complete dual resistance at temperatures ≥25°C and an increasingly susceptible response at temperatures below 25°C. Northern blot hybridization of total RNA from transgenic wheat revealed that virus-specific small RNAs (vsRNAs) accumulated progressively with an increase in temperature, with no detectable levels of vsRNA accumulation at 20°C. Thus, the resistance phenotype of wheat harboring an RNAi element was correlated with accumulation of vsRNAs, and the generation of vsRNAs can be used as a molecular marker for the prediction of resistant phenotypes of transgenic plants at a specific temperature.


Assuntos
Resistência à Doença , Plantas Geneticamente Modificadas , Triticum , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Potyviridae/fisiologia , Interferência de RNA , Triticum/genética , Triticum/virologia
3.
Plant Biotechnol J ; 18(9): 1955-1968, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32031318

RESUMO

Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components.


Assuntos
Agropyron , Triticum , Agropyron/genética , Desidratação , Secas , Genes de Plantas , Humanos , Triticum/genética , Água
4.
Planta ; 246(6): 1097-1107, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28801748

RESUMO

MAIN CONCLUSION: The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.


Assuntos
Alanina Transaminase/metabolismo , Hordeum/enzimologia , Nitrogênio/metabolismo , Sorghum/fisiologia , Triticum/enzimologia , Agrobacterium/fisiologia , Alanina Transaminase/genética , Grão Comestível/enzimologia , Grão Comestível/genética , Grão Comestível/fisiologia , Hordeum/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Sorghum/genética , Transgenes , Triticum/genética , Triticum/fisiologia
5.
Transgenic Res ; 26(1): 37-49, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27582300

RESUMO

Rust fungi of the order Pucciniales are destructive pathogens of wheat worldwide. Leaf rust caused by the obligate, biotrophic basidiomycete fungus Puccinia triticina (Pt) is an economically important disease capable of causing up to 50 % yield losses. Historically, resistant wheat cultivars have been used to control leaf rust, but genetic resistance is ephemeral and breaks down with the emergence of new virulent Pt races. There is a need to develop alternative measures for control of leaf rust in wheat. Development of transgenic wheat expressing an antifungal defensin offers a promising approach to complement the endogenous resistance genes within the wheat germplasm for durable resistance to Pt. To that end, two different wheat genotypes, Bobwhite and Xin Chun 9 were transformed with a chimeric gene encoding an apoplast-targeted antifungal plant defensin MtDEF4.2 from Medicago truncatula. Transgenic lines from four independent events were further characterized. Homozygous transgenic wheat lines expressing MtDEF4.2 displayed resistance to Pt race MCPSS relative to the non-transgenic controls in growth chamber bioassays. Histopathological analysis suggested the presence of both pre- and posthaustorial resistance to leaf rust in these transgenic lines. MtDEF4.2 did not, however, affect the root colonization of a beneficial arbuscular mycorrhizal fungus Rhizophagus irregularis. This study demonstrates that the expression of apoplast-targeted plant defensin MtDEF4.2 can provide substantial resistance to an economically important leaf rust disease in transgenic wheat without negatively impacting its symbiotic relationship with the beneficial mycorrhizal fungus.


Assuntos
Defensinas/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Resistência à Doença/genética , Medicago truncatula/genética , Doenças das Plantas/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Simbiose/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
6.
Mol Plant Microbe Interact ; 28(11): 1237-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26214711

RESUMO

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is a devastating disease of wheat that results in economic losses worldwide. During infection, F. graminearum produces trichothecene mycotoxins, including deoxynivalenol (DON), that increase fungal virulence and reduce grain quality. Transgenic wheat expressing a barley UDP-glucosyltransferase (HvUGT13248) were developed and evaluated for FHB resistance, DON accumulation, and the ability to metabolize DON to the less toxic DON-3-O-glucoside (D3G). Point-inoculation tests in the greenhouse showed that transgenic wheat carrying HvUGT13248 exhibited significantly higher resistance to disease spread in the spike (type II resistance) compared with nontransformed controls. Two transgenic events displayed complete suppression of disease spread in the spikes. Expression of HvUGT13248 in transgenic wheat rapidly and efficiently conjugated DON to D3G, suggesting that the enzymatic rate of DON detoxification translates to type II resistance. Under field conditions, FHB severity was variable; nonetheless, transgenic events showed significantly less-severe disease phenotypes compared with the nontransformed controls. In addition, a seedling assay demonstrated that the transformed plants had a higher tolerance to DON-inhibited root growth than nontransformed plants. These results demonstrate the utility of detoxifying DON as a FHB control strategy in wheat.


Assuntos
Fusarium/metabolismo , Glucosiltransferases/metabolismo , Hordeum/enzimologia , Proteínas de Plantas/metabolismo , Tricotecenos/metabolismo , Triticum/metabolismo , Southern Blotting , Western Blotting , Resistência à Doença/genética , Fusarium/fisiologia , Glucosídeos/metabolismo , Glucosiltransferases/genética , Hordeum/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Triticum/genética , Triticum/microbiologia , Difosfato de Uridina/metabolismo
7.
Plant Biotechnol J ; 10(5): 533-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22353344

RESUMO

Sorghum prolamins, termed kafirins, are categorized into subgroups α, ß, and γ. The kafirins are co-translationally translocated to the endoplasmic reticulum (ER) where they are assembled into discrete protein bodies that tend to be poorly digestible with low functionality in food and feed applications. As a means to address the issues surrounding functionality and digestibility in sorghum, we employed a biotechnology approach that is designed to alter protein body structure, with the concomitant synthesis of a co-protein in the endosperm fraction of the grain. Wherein perturbation of protein body architecture may provide a route to impact digestibility by reducing disulphide bonds about the periphery of the body, while synthesis of a co-protein, with known functionality attributes, theoretically could impact structure of the protein body through direct association and/or augment end-use applications of sorghum flour by stabilizing ß-sheet formation of the kafirins in sorghum dough preparations. This in turn may improve viscoelasticity of sorghum dough. To this end, we report here on the molecular and phenotypic characterizations of transgenic sorghum events that are down-regulated in γ- and the 29-kDa α-kafirins and the expression of a wheat Dy10/Dx 5 hybrid high-molecular weight glutenin protein. The results demonstrate that down-regulation of γ-kafirin alone does not alter protein body formation or impacts protein digestibility of cooked flour samples. However, reduction in accumulation of a predicted 29-kDa α-kafirin alters the morphology of protein body and enhances protein digestibility in both raw and cooked samples.


Assuntos
Proteínas de Plantas/metabolismo , Sementes/metabolismo , Sorghum/genética , Culinária , Regulação para Baixo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Sorghum/metabolismo
8.
Front Plant Sci ; 8: 434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424717

RESUMO

Nitrogen is essential for plant growth and development. Improving the ability of plants to acquire and assimilate nitrogen more efficiently is a key agronomic parameter that will augment sustainability in agriculture. A transcription factor approach was pursued to address improvement of nitrogen use efficiency in two major commodity crops. To this end, the Zea mays Dof1 (ZmDof1) transcription factor was expressed in both wheat (Triticum aestivum) and sorghum (Sorghum bicolor) either constitutively, UBI4 promoter from sugarcane, or in a tissue specific fashion via the maize rbcS1 promoter. The primary transcription activation target of ZmDof1, phosphoenolpyruvate carboxylase (PEPC), is observed in transgenic wheat events. Expression ZmDof1 under control of the rbcs1 promoter translates to increase in biomass and yield components in wheat. However, constitutive expression of ZmDof1 led to the down-regulation of genes involved in photosynthesis and the functional apparatus of chloroplasts, and an outcome that negatively impacts photosynthesis, height, and biomass in wheat. Similar patterns were also observed in sorghum transgenic events harboring the constitutive expression cassette of ZmDof1. These results indicate that transcription factor strategies to boost agronomic phenotypic outcomes in crops need to consider expression patterns of the genetic elements to be introduced.

9.
Plant Mol Biol ; 68(3): 277-88, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18622733

RESUMO

Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.


Assuntos
Dióxido de Carbono/metabolismo , Resposta ao Choque Térmico , Fator Tu de Elongação de Peptídeos/metabolismo , Plastídeos/metabolismo , Triticum/metabolismo , Flores/genética , Flores/metabolismo , Expressão Gênica , Fator Tu de Elongação de Peptídeos/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Desnaturação Proteica , Tilacoides/metabolismo , Fatores de Tempo , Triticum/genética , Triticum/crescimento & desenvolvimento , Zea mays/genética , Zea mays/metabolismo
10.
Protein Expr Purif ; 25(2): 348-52, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12135570

RESUMO

A method for purifying acylation stimulating protein (ASP) from porcine serum is described. The mRNA encoding ASP was cloned by reverse transcriptase-polymerase chain reaction which predicted a 76 residue peptide. Based on this sequence, we generated antisera to a C-terminal peptide (ASP(1-20)) which aided ASP purification. Identity of the purified protein was verified by N-terminal sequencing. The molecular mass of porcine ASP is 8926. Porcine ASP stimulated esterification of fatty acid into triacylglycerol in cultured human cells with potency similar to that of human ASP (twofold at 5 microM). Based on this evidence that ASP exists in porcine blood, and that it has acylation stimulating activity, we propose that ASP may play a role in regulation of energy storage in adipose tissue in the pig.


Assuntos
Proteínas Sanguíneas/isolamento & purificação , Proteínas Sanguíneas/metabolismo , Complemento C3a/análogos & derivados , Suínos/sangue , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Western Blotting , Clonagem Molecular , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Soros Imunes , Masculino , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA