Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 26(41): 8871-8874, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32180268

RESUMO

Hydride abstraction from diarylamines with the trityl ion is explored in an attempt to generate a stable diarylnitrenium ion, Ar2 N+ . Sequential H-atom abstraction reactions ensue. The first H-atom abstraction leads to intensely colored aminium radical cations, Ar2 NH.+ , some of which are quite stable. However, most undergo a second H-atom abstraction leading to ammonium ions, Ar2 NH2 + . In the absence of a ready source of H-atoms, a unique self-abstraction reaction occurs when Ar=Me5 C6 , leading to a novel iminium radical cation, Ar=N.+ Ar, which decays via a second self H-atom abstraction reaction to give a stable iminium ion, Ar=N+ HAr. These products differ substantially from those derived via photochemically produced diarylnitrenium ions.

2.
ACS Catal ; 14(16): 11949-11966, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39169910

RESUMO

This review will investigate the impact of electrochemical characterization method design choices on intrinsic catalyst activity measurements by predominantly using the oxygen reduction reaction (ORR) on supported catalysts as a model reaction. The wider use of hydrogen for transportation or electrical grid stabilization requires improvements in proton exchange membrane fuel cell (PEMFC) performance. One of the areas for improvement is the (ORR) catalyst efficiency and durability. Research and development of the traditional platinum-based catalysts have commonly been performed using rotating disk electrodes (RDE), rotating ring disk electrodes (RRDE), and membrane electrode assemblies (MEAs). However, the mass transport conditions of RDE and RRDE limit their usefulness in characterizing supported catalysts at high current densities, and MEA characterizations can be complex, lengthy, and costly. Ultramicroelectrode with a catalyst-filled cavity addresses some of these problems, but with limited success. Due to the properties discussed in this review, the recent floating electrode (FE) and the gas diffusion electrode (GDE) methods offer additional capabilities in the electrochemical characterization process. With the FE technique, the intrinsic activity of catalysts for ORR can be investigated, leading to a better understanding of the ORR mechanism through more reliable experimental data from application-relevant high-mass transport conditions. The GDEs are helpful bridging tools between RDE and MEA experiments, simplifying the fuel cell and electrolyzer manufacturing and operating optimization process.

3.
iScience ; 27(6): 109835, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799576

RESUMO

Virucidal filter materials were prepared by electrospinning a solution of 28 wt % poly(vinylidene difluoride) in N,N-dimethylacetamide without and with the addition of 0.25 wt %, 0.75 wt %, 2.0 wt %, or 3.5 wt % Cu(NO3)2 · 2.5H2O as virucidal agent. The fabricated materials had a uniform and defect free fibrous structure and even distribution of copper nanoclusters. X-ray diffraction analysis showed that during the electrospinning process, Cu(NO3)2 · 2.5H2O changed into Cu2(NO3)(OH)3. Electrospun filter materials obtained by electrospinning were essentially macroporous. Smaller pores of copper nanoclusters containing materials resulted in higher particle filtration than those without copper nanoclusters. Electrospun filter material fabricated with the addition of 2.0 wt % and 3.5 wt % of Cu(NO3)2 · 2.5H2O in a spinning solution showed significant virucidal activity, and there was 2.5 ± 0.35 and 3.2 ± 0.30 logarithmic reduction in the concentration of infectious SARS-CoV-2 within 12 h, respectively. The electrospun filter materials were stable as they retained virucidal activity for three months.

4.
RSC Adv ; 10(34): 20145-20154, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520424

RESUMO

Herein we demonstrate how peat, abundant and cheap biomass, can be successfully used as a precursor to synthesize peat-derived hard carbons (PDCs), applicable as electrode materials for sodium-ion batteries (SIB). The PDCs were obtained by pre-pyrolysing peat at 300-800 °C, removing impurities with base-acid solution treatment and thereafter post-pyrolysing the materials at temperatures (T) from 1000 to 1500 °C. By modification of pre- and post-pyrolysis temperatures we obtained hard carbons with low surface areas, optimal carbonization degree and high electrochemical Na+ storage capacity in SIB half-cells. The best results were obtained when pre-pyrolysing peat at 450 °C, washing out the impurities with KOH and HCl solutions and then post-pyrolysing the obtained carbon-rich material at 1400 °C. All hard carbons were electrochemically characterized in half-cells (vs. Na/Na+) and capacities as high as 350 mA h g-1 at 1.5 V and 250 mA h g-1 in the plateau region (E < 0.2 V) were achieved at charging current density of 25 mA g-1 with an initial coulombic efficiency of 80%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA