RESUMO
Cav1.3 voltage-gated L-type calcium channels (LTCCs) are involved in cardiac pacemaking, hearing and hormone secretion, but are also expressed postsynaptically in neurons. So far, homozygous loss of function mutations in CACNA1D encoding the Cav1.3 α1-subunit are described in congenital sinus node dysfunction and deafness. In addition, germline mutations in CACNA1D have been linked to neurodevelopmental syndromes including epileptic seizures, autism, intellectual disability and primary hyperaldosteronism. Here, a three-generation family with a syndromal phenotype of sinus node dysfunction, idiopathic epilepsy and attention deficit hyperactivity disorder (ADHD) is investigated. Whole genome sequencing and functional heterologous expression studies were used to identify the disease-causing mechanisms in this novel syndromal disorder. We identified a heterozygous non-synonymous variant (p.Arg930His) in the CACNA1D gene that cosegregated with the combined clinical phenotype in an autosomal dominant manner. Functional heterologous expression studies showed that the CACNA1D variant induces isoform-specific alterations of Cav1.3 channel gating: a gain of ion channel function was observed in the brain-specific short CACNA1D isoform (Cav1.3S), whereas a loss of ion channel function was seen in the long (Cav1.3L) isoform. The combined gain-of-function (GOF) and loss-of-function (LOF) induced by the R930H variant are likely to be associated with the rare combined clinical and syndromal phenotypes in the family. The GOF in the Cav1.3S variant with high neuronal expression is likely to result in epilepsy, whereas the LOF in the long Cav1.3L variant results in sinus node dysfunction.
Assuntos
Canais de Cálcio Tipo L , Epilepsia , Síndrome do Nó Sinusal , Humanos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Isoformas de Proteínas/metabolismo , Síndrome do Nó Sinusal/genética , Síndrome do Nó Sinusal/metabolismo , Sequenciamento do ExomaRESUMO
TASK-1 channels have emerged as promising drug targets against atrial fibrillation, the most common arrhythmia in the elderly. While TASK-3, the closest relative of TASK-1, was previously not described in cardiac tissue, we found a very prominent expression of TASK-3 in right human auricles. Immunocytochemistry experiments of human right auricular cardiomyocytes showed that TASK-3 is primarily localized at the plasma membrane. Single-channel recordings of right human auricles in the cell-attached mode, using divalent-cation-free solutions, revealed a TASK-1-like channel with a single-channel conductance of about 30pS. While homomeric TASK-3 channels were not found, we observed an intermediate single-channel conductance of about 55pS, possibly reflecting the heteromeric channel formed by TASK-1 and TASK-3. Subsequent experiments with TASK-1/TASK-3 tandem channels or with co-expressed TASK-1 and TASK-3 channels in HEK293 cells or Xenopus oocytes, supported that the 55pS channels observed in right auricles have electrophysiological characteristics of TASK-1/TASK-3 heteromers. In addition, co-expression experiments and single-channel recordings suggest that heteromeric TASK-1/TASK-3 channels have a predominant surface expression and a reduced affinity for TASK-1 blockers. In summary, the evidence for heteromeric TASK-1/TASK-3 channel complexes together with an altered pharmacologic response to TASK-1 blockers in vitro is likely to have further impact for studies isolating ITASK-1 from cardiomyocytes and for the development of drugs specifically targeting TASK-1 in atrial fibrillation treatment.
Assuntos
Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Benzamidas/farmacologia , Benzenoacetamidas/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Átrios do Coração/citologia , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Cultura Primária de Células , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , Xenopus laevis , ortoaminobenzoatos/farmacologiaRESUMO
Atrial fibrillation and obstructive sleep apnea are responsible for significant morbidity and mortality in the industrialized world. There is a high medical need for novel drugs against both diseases, and here, Kv1.5 channels have emerged as promising drug targets. In humans, TASK-1 has an atrium-specific expression and TASK-1 is also abundantly expressed in the hypoglossal motor nucleus. We asked whether known Kv1.5 channel blockers, effective against atrial fibrillation and/or obstructive sleep apnea, modulate TASK-1 channels. Therefore, we tested Kv1.5 blockers with different chemical structures for their TASK-1 affinity, utilizing two-electrode voltage clamp (TEVC) recordings in Xenopus oocytes. Despite the low structural conservation of Kv1.5 and TASK-1 channels, we found all Kv1.5 blockers analyzed to be even more effective on TASK-1 than on Kv1.5. For instance, the half-maximal inhibitory concentration (IC50) values of AVE0118 and AVE1231 (A293) were 10- and 43-fold lower on TASK-1. Also for MSD-D, ICAGEN-4, S20951 (A1899), and S9947, the IC50 values were 1.4- to 70-fold lower than for Kv1.5. To describe this phenomenon on a molecular level, we used in silico models and identified unexpected structural similarities between the two drug binding sites. Kv1.5 blockers, like AVE0118 and AVE1231, which are promising drugs against atrial fibrillation or obstructive sleep apnea, are in fact potent TASK-1 blockers. Accordingly, block of TASK-1 channels by these compounds might contribute to the clinical effectiveness of these drugs. The higher affinity of these blockers for TASK-1 channels suggests that TASK-1 might be an unrecognized molecular target of Kv1.5 blockers effective in atrial fibrillation or obstructive sleep apnea.
Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/metabolismo , Canal de Potássio Kv1.5/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Apneia Obstrutiva do Sono/tratamento farmacológico , Animais , Fibrilação Atrial/tratamento farmacológico , Compostos de Bifenilo/farmacologia , Canal de Potássio Kv1.5/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Apneia Obstrutiva do Sono/metabolismo , Xenopus laevis/metabolismoRESUMO
Small conductance calcium-activated potassium (SK2/K(Ca)2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K(+) currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction.
Assuntos
Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Ácido Glutâmico/genética , Ácido Glutâmico/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Membranas Mitocondriais/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Potássio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genéticaRESUMO
The time course of inactivation of voltage-activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvbeta subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce 'open-channel block'. Open-channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid-induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.
Assuntos
Ácidos Graxos Insaturados/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Edição de RNA , Tetraetilamônio/farmacologia , Animais , Ácido Araquidônico/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Ratos , Xenopus laevisRESUMO
BACKGROUND: It is poorly understood how hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) function. RESULTS: We have identified a leucine zipper in the S5 segment of HCNs, regulating hyperpolarization-activated and instantaneous current components. CONCLUSION: The leucine zipper is essential for HCN channel gating. SIGNIFICANCE: The identification and functional characterization of the leucine zipper is an important step toward the understanding of HCN channel function. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pacemakers in cardiac myocytes and neurons. Although their membrane topology closely resembles that of voltage-gated K(+) channels, the mechanism of their unique gating behavior in response to hyperpolarization is still poorly understood. We have identified a highly conserved leucine zipper motif in the S5 segment of HCN family members. In order to study the role of this motif for channel function, the leucine residues of the zipper were individually mutated to alanine, arginine, or glutamine residues. Leucine zipper mutants traffic to the plasma membrane, but the channels lose their sensitivity to open upon hyperpolarization. Thus, our data indicate that the leucine zipper is an important molecular determinant for hyperpolarization-activated channel gating. Residues of the leucine zipper interact with the adjacent S6 segment of the channel. This interaction is essential for voltage-dependent gating of the channel. The lower part of the leucine zipper, at the intracellular mouth of the channel, is important for stabilizing the closed state. Mutations at these sites increase current amplitudes or result in channels with deficient closing and increased min-P(o). Our data are further supported by homology models of the open and closed state of the HCN2 channel pore. Thus, we conclude that the leucine zipper of HCN channels is a major determinant for hyperpolarization-activated channel gating.
Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Zíper de Leucina , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Canais de Potássio/genética , Alinhamento de Sequência , Xenopus laevisRESUMO
Andersen-Tawil syndrome (ATS) is characterized by dysmorphic features, periodic paralyses and abnormal ventricular repolarization. After genotyping a large set of patients with congenital long-QT syndrome, we identified two novel, heterozygous KCNJ2 mutations (p.N318S, p.W322C) located in the C-terminus of the Kir2.1 subunit. These mutations have a different localization than classical ATS mutations which are mostly located at a potential interaction face with the slide helix or at the interface between the C-termini. Mutation carriers were without the key features of ATS, causing an isolated cardiac phenotype. While the N318S mutants regularly reached the plasma membrane, W322C mutants primarily resided in late endosomes. Co-expression of N318S or W322C with wild-type Kir2.1 reduced current amplitudes only by 20-25 %. This mild loss-of-function for the heteromeric channels resulted from defective channel trafficking (W322C) or gating (N318S). Strikingly, and in contrast to the majority of ATS mutations, neither mutant caused a dominant-negative suppression of wild-type Kir2.1, Kir2.2 and Kir2.3 currents. Thus, a mild reduction of native Kir2.x currents by non dominant-negative mutants may cause ATS with an isolated cardiac phenotype.
Assuntos
Síndrome de Andersen/genética , Frequência Cardíaca , Mutação , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Adulto , Idoso , Síndrome de Andersen/metabolismo , Síndrome de Andersen/fisiopatologia , Animais , Células COS , Criança , Chlorocebus aethiops , Análise Mutacional de DNA , Eletrocardiografia , Feminino , Predisposição Genética para Doença , Frequência Cardíaca/genética , Heterozigoto , Humanos , Medições Luminescentes , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Xenopus laevisRESUMO
Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K(2P) open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K(2P) channels.
Assuntos
Benzamidas/farmacologia , Benzenoacetamidas/farmacologia , Proteínas do Tecido Nervoso/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/química , Potássio/química , Alanina/química , Animais , Benzamidas/química , Benzenoacetamidas/química , Sítios de Ligação , DNA Complementar/metabolismo , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Mutagênese , Mutagênese Sítio-Dirigida , Oócitos/citologia , Técnicas de Patch-Clamp , Conformação Proteica , Xenopus laevisRESUMO
BACKGROUND/AIMS: The D553N mutation located in the C-linker of the cardiac pacemaker channel HCN4 is thought to cause sino-atrial dysfunction via a pronounced dominant-negative trafficking defect. Since HCN4 mutations usually have a minor defect in channel gating, it was our aim to further characterize the disease causing mechanism of D553N. METHODS: Fluorescence microscopy, FACS, TEVC and patch-clamp recordings were performed to characterize D553N. RESULTS: Surprisingly, we found that D553N channels reach the plasma membrane and have no apparent trafficking defect. Co-expression of D553N with HCN4 also revealed no dominant-negative effect on wild-type channels. Consistent with the normal cell surface expression of D553N, it was possible to extensively characterize D553N mutants in Xenopus oocytes and mammalian cells. D553N channels generate currents with reduced amplitude, while the kinetics of activation and deactivation are not altered. While the regulation of D553N by tyrosine kinases is normal, we observed a change in the cAMP regulation which however cannot account for the strong loss-of-function of the mutant. CONCLUSION: The pronounced current reduction and the regular surface expression indicate a major gating defect of the C-linker gate. We hypothesize that the D553N mutation stabilizes a previously reported salt bridge important for the gating of the channel.
Assuntos
Bradicardia/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Canais de Potássio/genética , Canais de Potássio/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Proteínas Musculares/química , Canais de Potássio/química , XenopusRESUMO
BACKGROUND/AIMS: The aim of the study was to characterize the whole cell current of the two-pore domain potassium channel TASK-1 (K2P3) in mouse ventricular cardiomyocytes (I(TASK-1)) and to analyze the cardiac phenotype of the TASK-1(-/-) mice. METHODS AND RESULTS: We have quantified the ventricular I(TASK-1) current using the blocker A293 and TASK-1(-/-) mice. Surface electrocardiogram recordings of TASK-1(-/-) mice showed a prolonged QTc interval and a broadened QRS complex. The differences in electrocardiograms between wild type and TASK-1(-/-) mice disappeared during sympathetic stimulation of the animals. Quantitative RT-PCR, patch clamp recordings and measurements of hemodynamic performance of TASK-1(-/-) mice revealed no major compensatory changes in ion channel transcription. Action potential recordings of TASK-1(-/-) mouse cardiomyocytes indicated that I(TASK-1) modulates action potential duration. Our in vivo electrophysiological studies showed that isoflurane, which activates TASK-1, slowed heart rate and atrioventricular conduction of wild-type but not of TASK-1(-/-) mice. CONCLUSION: The results of an invasive electrophysiological catheter protocol in combination with the observed QRS time prolongation in the surface electrocardiogram point towards a regulatory role of TASK-1 in the cardiac conduction system.
Assuntos
Síndrome do QT Longo/etiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sulfonamidas/farmacologia , ortoaminobenzoatos/farmacologia , Potenciais de Ação/fisiologia , Anestésicos Inalatórios/farmacologia , Animais , Fenômenos Eletrofisiológicos/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/fisiologia , Isoflurano/farmacologia , Metoxamina/farmacologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/deficiência , Canais de Potássio de Domínios Poros em Tandem/deficiênciaRESUMO
BACKGROUND/AIMS: Atrial fibrillation is the most common arrhythmia in the elderly, and potassium channels with atrium-specific expression have been discussed as targets to treat atrial fibrillation. Our aim was to characterize TASK-1 channels in human heart and to functionally describe the role of the atrial whole cell current I(TASK-1). METHODS AND RESULTS: Using quantitative PCR, we show that TASK-1 is predominantly expressed in the atria, auricles and atrio-ventricular node of the human heart. Single channel recordings show the functional expression of TASK-1 in right human auricles. In addition, we describe for the first time the whole cell current carried by TASK-1 channels (I(TASK-1)) in human atrial tissue. We show that I(TASK-1) contributes to the sustained outward current I(Ksus) and that I(TASK-1) is a major component of the background conductance in human atrial cardiomyocytes. Using patch clamp recordings and mathematical modeling of action potentials, we demonstrate that modulation of I(TASK-1) can alter human atrial action potential duration. CONCLUSION: Due to the lack of ventricular expression and the ability to alter human atrial action potential duration, TASK-1 might be a drug target for the treatment of atrial fibrillation.
Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Idoso , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Células Cultivadas , Eletrocardiografia , Feminino , Átrios do Coração/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/genética , XenopusRESUMO
Two-pore-domain potassium (K2P) channels are key regulators of many physiological and pathophysiological processes and thus emerged as promising drug targets. As for other potassium channels, there is a lack of selective blockers, since drugs preferentially bind to a conserved binding site located in the central cavity. Thus, there is a high medical need to identify novel drug-binding sites outside the conserved lipophilic central cavity and to identify new allosteric mechanisms of channel inhibition. Here, we identified a novel binding site and allosteric inhibition mechanism, disrupting the recently proposed K+-flux gating mechanism of K2P channels, which results in an unusual voltage-dependent block of leak channels belonging to the TASK subfamily. The new binding site and allosteric mechanism of inhibition provide structural and mechanistic insights into the gating of TASK channels and the basis for the drug design of a new class of potent blockers targeting specific types of K2P channels.
Assuntos
Inibidores Enzimáticos/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Regulação Alostérica , Animais , Sítios de Ligação , Células Cultivadas , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Oócitos , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Xenopus laevisRESUMO
Two-pore-domain potassium (K2P) channels have a large extracellular cap structure formed by two M1-P1 linkers, containing a cysteine for dimerization. However, this cysteine is not present in the TASK-1/3/5 subfamily. The functional role of the cap is poorly understood and it remained unclear whether K2P channels assemble in the domain-swapped orientation or not. Functional alanine-mutagenesis screens of TASK-1 and TRAAK were used to build an in silico model of the TASK-1 cap. According to our data the cap structure of disulfide-bridge free TASK channels is similar to that of other K2P channels and is most likely assembled in the domain-swapped orientation. As the conserved cysteine is not essential for functional expression of all K2P channels tested, we propose that hydrophobic residues at the inner leaflets of the cap domains can interact with each other and that this way of stabilizing the cap is most likely conserved among K2P channels.
Assuntos
Dissulfetos/metabolismo , Testes Genéticos , Mutagênese/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio/química , Canais de Potássio/genética , Alanina/genética , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Sequência Conservada , Cisteína/metabolismo , Condutividade Elétrica , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , XenopusRESUMO
Rats of the Wistar Albino Glaxo/Rij (WAG/Rij) strain show symptoms resembling human absence epilepsy. Thalamocortical neurons of WAG/Rij rats are characterized by an increased HCN1 expression, a negative shift in I h activation curve, and an altered responsiveness of I h to cAMP. We cloned HCN1 channels from rat thalamic cDNA libraries of the WAG/Rij strain and found an N-terminal deletion of 37 amino acids. In addition, WAG-HCN1 has a stretch of six amino acids, directly following the deletion, where the wild-type sequence (GNSVCF) is changed to a polyserine motif. These alterations were found solely in thalamus mRNA but not in genomic DNA. The truncated WAG-HCN1 was detected late postnatal in WAG/Rij rats and was not passed on to rats obtained from pairing WAG/Rij and non-epileptic August Copenhagen Irish rats. Heterologous expression in Xenopus oocytes revealed 2.2-fold increased current amplitude of WAG-HCN1 compared to rat HCN1. While WAG-HCN1 channels did not have altered current kinetics or changed regulation by protein kinases, fluorescence imaging revealed a faster and more pronounced surface expression of WAG-HCN1. Using co-expression experiments, we found that WAG-HCN1 channels suppress heteromeric HCN2 and HCN4 currents. Moreover, heteromeric channels of WAG-HCN1 with HCN2 have a reduced cAMP sensitivity. Functional studies revealed that the gain-of-function of WAG-HCN1 is not caused by the N-terminal deletion alone, thus requiring a change of the N-terminal GNSVCF motif. Our findings may help to explain previous observations in neurons of the WAG/Rij strain and indicate that WAG-HCN1 may contribute to the genesis of absence seizures in WAG/Rij rats.
RESUMO
Analyzing a patient with progressive and severe cardiac conduction disorder combined with idiopathic ventricular fibrillation (IVF), we identified a splice site mutation in the sodium channel gene SCN5A. Due to the severe phenotype, we performed whole-exome sequencing (WES) and identified an additional mutation in the KCNK17 gene encoding the K2P potassium channel TASK-4. The heterozygous change (c.262G>A) resulted in the p.Gly88Arg mutation in the first extracellular pore loop. Mutant TASK-4 channels generated threefold increased currents, while surface expression was unchanged, indicating enhanced conductivity. When co-expressed with wild-type channels, the gain-of-function by G88R was conferred in a dominant-active manner. We demonstrate that KCNK17 is strongly expressed in human Purkinje cells and that overexpression of G88R leads to a hyperpolarization and strong slowing of the upstroke velocity of spontaneously beating HL-1 cells. Thus, we propose that a gain-of-function by TASK-4 in the conduction system might aggravate slowed conductivity by the loss of sodium channel function. Moreover, WES supports a second hit-hypothesis in severe arrhythmia cases and identified KCNK17 as a novel arrhythmia gene.
Assuntos
Arritmias Cardíacas/genética , Sistema de Condução Cardíaco/anormalidades , Mutação , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Fibrilação Ventricular/genética , Sequência de Aminoácidos , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Linhagem Celular , Estudos de Coortes , Feminino , Genótipo , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Miocárdio/metabolismo , Miocárdio/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/análise , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio de Domínios Poros em Tandem/análise , Fibrilação Ventricular/complicações , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/patologia , XenopusRESUMO
Virtually all organisms use RNA editing as a powerful post-transcriptional mechanism to recode genomic information and to increase functional protein diversity. The enzymatic editing of pre-mRNA by ADARs and CDARs is known to change the functional properties of neuronal receptors and ion channels regulating cellular excitability. However, RNA editing is also an important mechanism for genes expressed outside the brain. The fact that RNA editing breaks the 'one gene encodes one protein' hypothesis is daunting for scientists and a probable drawback for drug development, as scientists might search for drugs targeting the 'wrong' protein. This possible difficulty for drug discovery and development became more evident from recent publications, describing that RNA editing events have profound impact on the pharmacology of some common drug targets. These recent studies highlight that RNA editing can cause massive discrepancies between the in vitro and in vivo pharmacology. Here, we review the putative impact of RNA editing on drug discovery, as RNA editing has to be considered before using high-throughput screens, rational drug design or choosing the right model organism for target validation.