Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176995

RESUMO

The synthesis and characterization of sol-gel-derived cornhusk support for low-temperature catalytic methane combustion (LTCMC) were investigated in this study. The prepared cornhusk support was impregnated with palladium and cerium oxide (Pd/CeO2) via the classical incipient wetness method. The resulting catalyst was characterized using various techniques, including X-ray diffraction (XRD), N2 physisorption (BET), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR). The catalytic performance of the Pd/CeO2/CHSiO2 catalyst was evaluated for methane combustion in the temperature range of 150-600 °C using a temperature-controlled catalytic flow reactor, and its performance was compared with a commercial catalyst. The results showed that the Pd/CeO2 dispersed on SiO2 from the cornhusk ash support (Pd/CeO2/CHSiO2) catalyst exhibited excellent catalytic activity for methane combustion, with a conversion of 50% at 394 °C compared with 593 °C for the commercial silica catalyst (Pd/CeO2/commercial). Moreover, the Pd/CeO2/CHSiO2 catalyst displayed better catalytic stability after 10 h on stream, with a 7% marginal loss in catalytic activity compared with 11% recorded for the Pd/CeO2/commercial catalyst. The N2 physisorption and H2-TPR results indicated that the cornhusk SiO2 support possessed a higher surface area and strong reducibility than the synthesized commercial catalyst, contributing to the enhanced catalytic activity of the Pd/CeO2/SiO2 catalyst. Overall, the SiO2 generated from cornhusk ash exhibited promising potential as a low-cost and environmentally friendly support for LTCMC catalysts.

2.
Materials (Basel) ; 14(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885609

RESUMO

The combination of layered double hydroxides (LDH) with graphene oxide (GO) enables the formation of nanohybrids with improved properties. This work focuses on the structural and catalytic properties of Ce-containing MgAl LDH-GO composites bearing different concentrations of GO in the range of 5-25 wt.%. The synthesis of the composites was performed by co-precipitating the LDH phase in the presence of GO, while their characterization was performed using XRF, XRD, DRIFT, Raman, SEM, nitrogen adsorption-desorption, and acidity-basicity measurements. The LDH-GO composites, showing redox, basic, and acid catalytic functions, were tested in two different types of organic transformations: (i) Knoevenagel condensation and (ii) one-pot cascade oxidation-Knoevenagel condensation. (i) The cinnamic acid was synthesized by the Knoevenagel condensation of benzaldehyde with diethylmalonate. The composites showed catalytic performances in strong contrast to neat LDH or GO, suggesting a synergistic interaction between the two components. During Knoevenagel condensation, the catalytic activity increased with the GO content in the hybrids up to 15 wt.% and decreased afterwards. (ii) 2-Benzoyl-3-phenylacrylonitrile was synthesized by the aerobic oxidation of benzyl alcohol followed by the Knoevenagel condensation with benzoyl acetonitrile using three different non-polar solvents, i.e., toluene, benzene, and mesitylene. The conversion of benzyl alcohol was higher for the hybrid materials compared to the individual components but decreased with the increase of the graphene oxide concentration.

3.
Plant Biotechnol J ; 7(9): 883-98, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19843250

RESUMO

The production of biodegradable polymers that can be used to substitute petrochemical compounds in commercial products in transgenic plants is an important challenge for plant biotechnology. Nevertheless, it is often accompanied by reduced plant fitness. To decrease the phenotypic abnormalities of the sprout and to increase polymer production, we restricted cyanophycin accumulation to the potato tubers by using the cyanophycin synthetase gene (cphA(Te)) from Thermosynechococcus elongatus BP-1, which is under the control of the tuber-specific class 1 promoter (B33). Tuber-specific cytosolic (pB33-cphA(Te)) as well as tuber-specific plastidic (pB33-PsbY-cphA(Te)) expression resulted in significant polymer accumulation solely in the tubers. In plants transformed with pB33-cphA(Te), both cyanophycin synthetase and cyanophycin were detected in the cytoplasm leading to an increase up to 2.3% cyanophycin of dry weight and resulting in small and deformed tubers. In B33-PsbY-cphA(Te) tubers, cyanophycin synthetase and cyanophycin were exclusively found in amyloplasts leading to a cyanophycin accumulation up to 7.5% of dry weight. These tubers were normal in size, some clones showed reduced tuber yield and sometimes exhibited brown sunken staining starting at tubers navel. During a storage period over of 32 weeks of one selected clone, the cyanophycin content was stable in B33-PsbY-cphA(Te) tubers but the stress symptoms increased. However, all tubers were able to germinate. Nitrogen fertilization in the greenhouse led not to an increased cyanophycin yield, slightly reduced protein content, decreased starch content, and changes in the amounts of bound and free arginine and aspartate, as compared with control tubers were observed.


Assuntos
Proteínas de Bactérias/genética , Peptídeo Sintases/genética , Proteínas de Plantas/biossíntese , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Proteínas de Bactérias/metabolismo , Citosol/enzimologia , Regulação da Expressão Gênica de Plantas , Peptídeo Sintases/metabolismo , Tubérculos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/enzimologia , Regiões Promotoras Genéticas , Solanum tuberosum/genética
4.
ChemistryOpen ; 8(8): 1066-1075, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31406653

RESUMO

For the first time, the oxidative dehydrogenation of (-)-menthol to (-)-menthone and (+)-isomenthone in a marketable quality was carried out in a continuous gas phase reactor as a sustainable process using molecular oxygen as green oxidant and solid catalysts which do not contaminate the product mixture and which are easily to remove. The diastereomeric purity remained largely unchanged. Three types of catalysts were found to be very active and selective in the formation of menthone and isomenthone: AgSr/SiO2, CuO distributed on a basic support and RuMnCe/CeO2, where Ru, Mn and Ce exist in an oxidized state. The best overall yield of menthon/isomenthone obtained with an Ag-based catalyst was 58 % at 64 % selectivity, with a Cu-based catalyst 41 % at 51 % selectivity and with a Ru-based catalyst 68 % at 73 % selectivity. Reaction conditions were widely optimized.

5.
J Biotechnol ; 158(1-2): 50-8, 2012 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-22244982

RESUMO

A chimeric cyanophycin synthetase gene composed of the cphATe coding region from the cyanobacterium Thermosynechococcus elongatus BP-1, the constitutive 35S promoter and the plastid targeting sequence of the integral photosystem II protein PsbY was transferred to the tobacco variety Petit Havanna SRI and the commercial potato starch production variety Albatros. The resulting constitutive expression of cyanophycin synthetase leads to polymer contents in potato leaf chloroplasts of up to 35 mg/g dry weight and in tuber amyloplasts of up to 9 mg/g dry weight. Both transgenic tobacco and potato were used for the development of isolation methods applicable for large-scale extraction of the polymer. Two different procedures were developed which yielded polymer samples of 80 and 90% purity, respectively.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Nicotiana/genética , Peptídeo Sintases/genética , Solanum tuberosum/genética , Proteínas de Bactérias/química , Cloroplastos/química , Cloroplastos/genética , Cianobactérias/genética , Folhas de Planta/química , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA