Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Immunol ; 204(8): 2295-2307, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32179637

RESUMO

MHC class II (MHCII) expression is usually restricted to APC but can be expressed by cancer cells. We examined the effect of cancer cell-specific MHCII (csMHCII) expression in lung adenocarcinoma on T cell recruitment to tumors and response to anti-PD-1 therapy using two orthotopic immunocompetent murine models of non-small cell lung cancer: CMT167 (CMT) and Lewis lung carcinoma (LLC). We previously showed that CMT167 tumors are eradicated by anti-PD1 therapy, whereas LLC tumors are resistant. RNA sequencing analysis of cancer cells recovered from tumors revealed that csMHCII correlated with response to anti-PD1 therapy, with immunotherapy-sensitive CMT167 cells being csMHCII positive, whereas resistant LLC cells were csMHCII negative. To test the functional effects of csMHCII, MHCII expression was altered on the cancer cells through loss- and gain-of-function of CIITA, a master regulator of the MHCII pathway. Loss of CIITA in CMT167 decreased csMHCII and converted tumors from anti-PD-1 sensitive to anti-PD-1 resistant. This was associated with lower levels of Th1 cytokines, decreased T cell infiltration, increased B cell numbers, and decreased macrophage recruitment. Conversely, overexpression of CIITA in LLC cells resulted in csMHCII in vitro and in vivo. Enforced expression of CIITA increased T cell infiltration and sensitized tumors to anti-PD-1 therapy. csMHCII expression was also examined in a subset of surgically resected human lung adenocarcinomas by multispectral imaging, which provided a survival benefit and positively correlated with T cell infiltration. These studies demonstrate a functional role for csMHCII in regulating T cell infiltration and sensitivity to anti-PD-1.


Assuntos
Adenocarcinoma de Pulmão/terapia , Antígenos de Histocompatibilidade Classe II/genética , Neoplasias Pulmonares/terapia , Proteínas Nucleares/genética , Transativadores/genética , Microambiente Tumoral/genética , Adenocarcinoma de Pulmão/imunologia , Animais , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe II/imunologia , Neoplasias Pulmonares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/imunologia , Receptor de Morte Celular Programada 1/imunologia , Transativadores/imunologia , Microambiente Tumoral/imunologia
2.
Kidney Int ; 92(1): 47-66, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28434822

RESUMO

Contrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.v. ferumoxytol include a prolonged blood pool phase and delayed intracellular uptake. With its unique pharmacologic, metabolic, and imaging properties, ferumoxytol may play a crucial role in future magnetic resonance imaging of the central nervous system, various organs outside the central nervous system, and the cardiovascular system. Preclinical and clinical studies have demonstrated the overall safety and effectiveness of this novel contrast agent, with rarely occurring anaphylactoid reactions. The purpose of this review is to describe the general and organ-specific properties of ferumoxytol, as well as the advantages and potential pitfalls associated with its use in magnetic resonance imaging. To more fully demonstrate the applications of ferumoxytol throughout the body, an imaging atlas was created and is available online as supplementary material.


Assuntos
Meios de Contraste/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Animais , Atlas como Assunto , Pré-Escolar , Meios de Contraste/efeitos adversos , Meios de Contraste/farmacocinética , Feminino , Óxido Ferroso-Férrico/efeitos adversos , Óxido Ferroso-Férrico/farmacocinética , Hematínicos/administração & dosagem , Humanos , Rim/fisiopatologia , Imageamento por Ressonância Magnética/efeitos adversos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Eliminação Renal , Insuficiência Renal Crônica/fisiopatologia , Reprodutibilidade dos Testes
3.
AJR Am J Roentgenol ; 204(3): W302-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25714316

RESUMO

OBJECTIVE. In this article, we summarize the progress to date on the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for MRI of inflammatory processes. CONCLUSION. Phagocytosis by macrophages of injected SPIONs results in a prolonged shortening of both T2 and T2* leading to hypointensity of macrophage-infiltrated tissues in contrast-enhanced MR images. SPIONs as contrast agents are therefore useful for the in vivo MRI detection of macrophage infiltration, and there is substantial research and clinical interest in the use of SPION-based contrast agents for MRI of infection and inflammation. This technique has been used to identify active infection in patients with septic arthritis and osteomyelitis; importantly, the MRI signal intensity of the tissue has been found to return to its unenhanced value on successful treatment of the infection. In SPION contrast-enhanced MRI of vascular inflammation, animal studies have shown decreased macrophage uptake in atherosclerotic plaques after treatment with statin drugs. Human studies have shown that both coronary and carotid plaques that take up SPIONs are more prone to rupture and that abdominal aneurysms with increased SPION uptake are more likely to grow. Studies of patients with multiple sclerosis suggest that MRI using SPIONs may have increased sensitivity over gadolinium for plaque detection. Finally, SPIONs have enabled the tracking and imaging of transplanted stem cells in a recipient host.


Assuntos
Meios de Contraste , Dextranos , Infecções/diagnóstico , Inflamação/diagnóstico , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Nanopartículas , Animais , Humanos
4.
Pediatr Blood Cancer ; 61(1): 120-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23956023

RESUMO

BACKGROUND: Atypical teratoid rhabdoid tumors (AT-RT) are pediatric tumors of the central nervous system with limited treatment options and poor survival rate. We investigated whether enhancing chemotherapy toxicity by depleting intracellular glutathione (GSH; a key molecule in cisplatin resistance) with high dose acetaminophen (AAP), may improve therapeutic efficacy in AT-RT in vitro. PROCEDURE: BT16 (cisplatin-resistant) and BT12 (cisplatin-sensitive) AT-RT cell lines were treated with combinations of AAP, cisplatin, and the anti-oxidant N-acetylcysteine (NAC). Cell viability, GSH and peroxide concentrations, mitochondrial damage, and apoptosis were evaluated in vitro. RESULTS: AAP enhanced cisplatin cytotoxicity in cisplatin-resistant BT16 cells but not cisplatin-sensitive BT12 cells. Baseline GSH levels were elevated in BT16 cells compared to BT12 cells, and AAP decreased GSH to a greater magnitude in BT16 cells than BT12 cells. Unlike BT12 cells, BT16 cells did not have elevated peroxide levels upon treatment with cisplatin alone, but did have elevated levels when treated with AAP + cisplatin. Both cell lines had markedly increased mitochondrial injury when treated with AAP + cisplatin relative to either drug treatment alone. The enhanced toxic effects were partially reversed with concurrent administration of NAC. CONCLUSIONS: Our results suggest that AAP could be used as a chemo-enhancement agent to potentiate cisplatin chemotherapeutic efficacy particularly in cisplatin-resistant AT-RT tumors with high GSH levels in clinical settings.


Assuntos
Acetaminofen/administração & dosagem , Acetilcisteína/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/administração & dosagem , Tumor Rabdoide , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia
5.
Cancers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835464

RESUMO

High-dose acetaminophen (AAP) with N-acetylcysteine (NAC) rescue is among the few treatments that has shown activity in phase I trials without achieving dose-limiting toxicity that has not progressed to evaluation in later line studies. While the anti-tumor effects of AAP/NAC appear not to be mediated by glutathione depletion and free radical injury, the mechanism of anti-tumor effects of AAP/NAC has not been definitively characterized. In vitro, the effects of AAP/NAC were evaluated on bone marrow derived macrophages. Effects of AAP on IL-4/STAT6 (M2) or IFN/LPS/STAT1 (M1) signaling and downstream gene and protein expression were studied. NAC reversed the AAP toxicity in the normal liver but did not reverse AAP cytotoxicity against tumor cells in vitro. AAP/NAC selectively inhibited IL-4-induced STAT6 phosphorylation but not IFN/LPS-induced STAT1 phosphorylation. Downstream, AAP/NAC inhibited IL-4 induction of M2-associated genes and proteins but did not inhibit the IFN/LPS induction of M1-associated genes and proteins. In vivo, AAP/NAC inhibited tumor growth in EF43.fgf4 and 4T1 triple-negative breast tumors. Flow cytometry of tumor-associated macrophages revealed that AAP/NAC selectively inhibited M2 polarization. The anti-tumor activity of high-dose AAP/NAC is lost in macrophage-depleted mouse syngeneic tumor models, suggesting a macrophage-dependent mechanism of action. In conclusion, our study is the first to show that high-dose AAP/NAC has profound effects on the tumor immune microenvironment that facilitates immune-mediated inhibition of tumor growth.

6.
Cancers (Basel) ; 13(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34359704

RESUMO

Tumor-associated macrophages (TAMs) in breast cancer regulate inflammation, immunosuppression, angiogenesis, and metastasis. However, TAM imaging remains a clinical challenge. Ferumoxytol has long been an FDA-approved superparamagnetic iron oxide nanoparticle (SPION) preparation used as an intravenous (IV) treatment for iron-deficiency anemia. Given its high transverse relaxivity, ferumoxytol produces a negative image contrast upon cellular uptake in T2-weighted magnetic resonance imaging (MRI) studies. Here we evaluated ferumoxytol as a contrast agent to image/quantify TAMs in an aggressive mouse model of breast cancer: We developed [Fe]MRI to measure the 5-dimensional function c(x,y,z,t), where c is the concentration of nanoparticle iron and {x,y,z,t} is the 4-dimensional set of tumor space-time coordinates. Ferumoxytol SPIONs are readily phagocytosed (~104/cell) by the F4/80+CD11b+ TAMs within breast tumors. Quantitative [Fe]MRIs served to determine both the spatial and the temporal distribution of the SPION iron, and hence to measure [Fe] = c(x,y,z,t), a surrogate for TAM density. In single-dose pharmacokinetic studies, after an IV dose of 5 mg/Kg iron, [Fe]MRI measurements showed that c(x,y,z,t) within breast tumors peaked around [Fe] = 70 µM at 42 h post-administration, and decayed below the [Fe]MRI detection limit (~2 µM) by day 7. There was no SPION uptake in control organs (muscle and adipose tissue). Optical microscopy of tissue sections confirmed that F4/80+CD11b+ TAMs infiltrated the tumors and accumulated SPION iron. Our methodology and findings have translational applications for breast cancer patients.

7.
Neoplasia ; 23(3): 348-359, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33640759

RESUMO

High-dose acetaminophen (AAP) with delayed rescue using n-acetylcysteine (NAC), the FDA-approved antidote to AAP overdose, has demonstrated promising antitumor efficacy in early phase clinical trials. However, the mechanism of action (MOA) of AAP's anticancer effects remains elusive. Using clinically relevant AAP concentrations, we evaluated cancer stem cell (CSC) phenotype in vitro and in vivo in lung cancer and melanoma cells with diverse driver mutations. Associated mechanisms were also studied. Our results demonstrated that AAP inhibited 3D spheroid formation, self-renewal, and expression of CSC markers when human cancer cells were grown in serum-free CSC media. Similarly, anti-CSC activity was demonstrated in vivo in xenograft models - tumor formation following in vitro treatment and ex-vivo spheroid formation following in vivo treatment. Intriguingly, NAC, used to mitigate AAP's liver toxicity, did not rescue cells from AAP's anti-CSC effects, and AAP failed to reduce glutathione levels in tumor xenograft in contrast to mice liver tissue suggesting nonglutathione-related MOA. In fact, AAP mediates its anti-CSC effect via inhibition of STAT3. AAP directly binds to STAT3 with an affinity in the low micromolar range and a high degree of specificity for STAT3 relative to STAT1. These findings have high immediate translational significance concerning advancing AAP with NAC rescue to selectively rescue hepatotoxicity while inhibiting CSCs. The novel mechanism of selective STAT3 inhibition has implications for developing rational anticancer combinations and better patient selection (predictive biomarkers) for clinical studies and developing novel selective STAT3 inhibitors using AAP's molecular scaffold.


Assuntos
Acetaminofen/farmacologia , Antineoplásicos/farmacologia , Radicais Livres/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Antígeno AC133/metabolismo , Acetaminofen/administração & dosagem , Antineoplásicos/administração & dosagem , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Humanos , Interleucina-6/antagonistas & inibidores , Neoplasias Pulmonares , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
8.
Med Sci Monit ; 16(7): PI13-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20581787

RESUMO

BACKGROUND: Cardiovascular complications in patients with chronic kidney disease (CKD) are frequent. They show increased cardiovascular mortality and morbidity attributable to accumulation of several risk factors; e.g., hypertension, oxidative stress and elevated plasma homocysteine concentration. Despite recent progress in their management, there is still no optimal therapy that can stop progression of CKD and decrease cardiovascular outcome in these patients. Antioxidants, e.g., N-acetylcysteine (NAC), have been suggested as a promising medicament in this field. MATERIAL/METHODS: In a placebo-controlled, randomized, two-period cross-over study we evaluated the influence of eight weeks of NAC therapy (1200 mg/day) added to pharmacological renin-angiotensin system blockade on ambulatory blood pressure and surrogate markers of cardiovascular risk and injury in 20 non-diabetic patients with albuminuria [30-915 mg per creatinine mg] and normal or slightly decreased kidney function [eGFR 61-163 ml/min]. After eight weeks run-in period during which the therapy using angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers was settled, patients were randomly assigned to one of two treatment sequences: NAC/washout/placebo or placebo/washout/NAC. RESULTS: No significant changes in blood pressure, albuminuria and homocysteine plasma level were observed. CONCLUSIONS: NAC had no effect on blood pressure and surrogate markers of cardiovascular injury in non-diabetic patients with CKD.


Assuntos
Acetilcisteína/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/fisiopatologia , Falência Renal Crônica/complicações , Acetilcisteína/efeitos adversos , Acetilcisteína/uso terapêutico , Adolescente , Adulto , Idoso , Albuminúria/complicações , Biomarcadores/metabolismo , Estudos Cross-Over , Complicações do Diabetes/fisiopatologia , Feminino , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Homocisteína/sangue , Humanos , Falência Renal Crônica/tratamento farmacológico , Falência Renal Crônica/fisiopatologia , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Placebos , Proteínas/metabolismo , Fatores de Risco , Sódio/metabolismo , Adulto Jovem
9.
Sensors (Basel) ; 10(1): 280-91, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22315540

RESUMO

The direct and accurate estimation of nitric dioxide levels is an extremely laborious and technically demanding procedure in the molecular diagnostics of inflammatory processes. The aim of this work is to demonstrate that a stop-flow technique utilizing a specific spectroscopic biosensor can be used for detection of nanomolar quantities of NO(2) in biological milieu. The use of novel compound cis-[Cr(C(2)O(4))(AaraNH(2))(OH(2))(2)](+) increases NO(2) estimation accuracy by slowing down the rate of NO(2) uptake. In this study, an animal model of pancreatitis, where nitrosative stress is induced by either 3g/kg bw or 1.5 g/kg bw dose of L-arginine, was used. Biochemical parameters and morphological characteristics of acute pancreatitis were monitored, specifically assessing pancreatic acinar cell death mode, NO(2) generation and cellular glutathione level. The severity of the process correlated positively with NO(2) levels in pancreatic acinar cell cytosol samples, and negatively with cellular glutathione levels.


Assuntos
Técnicas Biossensoriais/instrumentação , Análise de Injeção de Fluxo/instrumentação , Dióxido de Nitrogênio/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Doença Aguda , Animais , Apoptose , Desenho de Equipamento , Análise de Falha de Equipamento , Masculino , Necrose/metabolismo , Dióxido de Nitrogênio/análise , Ratos , Ratos Wistar
10.
Blood Adv ; 4(17): 4256-4266, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32898250

RESUMO

The majority of historical therapies for managing T-cell lymphomas (TCLs) have consisted of T-cell-depleting strategies. Unfortunately, these forms of therapies can hamper the ability to mount effective antitumor immune responses. Recently, the use of checkpoint inhibitors has revolutionized the therapy of solid and hematologic malignancies. The development of immunotherapies for the management of TCL has lagged behind other malignancies given 2 central reasons: (1) the competing balance of depleting malignant T cells while simultaneously enhancing an antitumor T-cell response and (2) concern for tumor hyperprogression by blocking inhibitory signals on the surface of the malignant T cell, thereby leading to further proliferation of the malignant cells. These challenges were highlighted with the discovery that programmed cell death protein 1 (PD-1) functions paradoxically as a haploinsufficient tumor suppressor in preclinical TCL models. In contrast, some preclinical and clinical evidence suggests that PD-1/programmed death ligand 1 may become an important therapeutic tool in the management of patients with TCL. Improved understanding of the immune landscape of TCL is necessary in order to identify subsets of patients most likely to benefit from checkpoint-inhibitor therapy. With increased preclinical research focus on the tumor microenvironment, substantial strides are being made in understanding how to harness the power of the immune system to treat TCLs. In this review, designed to be a "call to action," we discuss the challenges and opportunities of using immune-modulating therapies, with a focus on checkpoint inhibitors, for the treatment of patients with TCL.


Assuntos
Antígeno B7-H1 , Linfoma de Células T , Humanos , Imunoterapia , Linfócitos T , Microambiente Tumoral
11.
J Immunother Cancer ; 8(1)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32312906

RESUMO

BACKGROUND: Programmed death 1/programmed death ligand 1 (PD-1/PD-L1) targeted immunotherapy affords clinical benefit in ~20% of unselected patients with lung cancer. The factor(s) that determine whether a tumor responds or fails to respond to immunotherapy remains an active area of investigation. We have previously defined divergent responsiveness of two KRAS-mutant cell lines to PD-1/PD-L1 blockade using an orthotopic, immunocompetent mouse model. Responsiveness to PD-1/PD-L1 checkpoint blockade correlates with an interferon gamma (IFNγ)-inducible gene signature and major histocompatibility complex class II (MHC II) expression by cancer cells. In the current study, we aim to identify therapeutic targets that can be manipulated in order to enhance cancer-cell-specific MHC II expression. METHODS: Responsiveness to IFNγ and induction of MHC II expression was assessed after various treatment conditions in mouse and human non-small cell lung cancer (NSCLC) cell lines using mass cytometric and flow cytometric analysis. RESULTS: Single-cell analysis using mass and flow cytometry demonstrated that IFNγ consistently induced PD-L1 and MHC class I (MHC I) across multiple murine and human NSCLC cell lines. In contrast, MHC II showed highly variable induction following IFNγ treatment both between lines and within lines. In mouse models of NSCLC, MHC II induction was inversely correlated with basal levels of phosphorylated extracellular signal-regulated kinase (ERK) 1/2, suggesting potential mitogen-activated protein (MAP) kinase-dependent antagonism of MHC II expression. To test this, cell lines were subjected to varying levels of stimulation with IFNγ, and assessed for MHC II expression in the presence or absence of mitogen-activated protein kinase kinase (MEK) inhibitors. IFNγ treatment in the presence of MEK inhibitors significantly enhanced MHC II induction across multiple lung cancer lines, with minimal impact on expression of either PD-L1 or MHC I. Inhibition of histone deacetylases (HDACs) also enhanced MHC II expression to a more modest extent. Combined MEK and HDAC inhibition led to greater MHC II expression than either treatment alone. CONCLUSIONS: These studies emphasize the active inhibitory role that epigenetic and ERK signaling cascades have in restricting cancer cell-intrinsic MHC II expression in NSCLC, and suggest that combinatorial blockade of these pathways may engender new responsiveness to checkpoint therapies.


Assuntos
Antígeno B7-H1/metabolismo , Epigênese Genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Antivirais/farmacologia , Antígeno B7-H1/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Interferon gama/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Células Tumorais Cultivadas
12.
Clin Cancer Res ; 14(2): 533-40, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18223229

RESUMO

PURPOSE: We determined if the potentially otoprotective agent sodium thiosulfate (STS) could be given 6 h after cisplatin without diminishing the antineuroblastoma activity of cisplatin in human neuroblastoma cell lines in vitro (including cisplatin-resistant cell lines) and in neuroblastoma xenografts in vivo. EXPERIMENTAL DESIGN: We determined the antineuroblastoma activity of cisplatin with or without the addition of STS at 0 or 6 h after cisplatin in six neuroblastoma cell lines, both in standard cell culture conditions (20% O(2)) and in physiologic hypoxia (2% O(2)). Drug cytotoxicity was measured using the DIMSCAN fluorescence/digital imaging microscopy assay. In vivo studies of cisplatin combined with STS used a human neuroblastoma subcutaneous xenograft model (SMS-SAN) in athymic nu/nu mice. RESULTS: A significant protection against cisplatin cytotoxicity was seen when the neuroblastoma cells were exposed to cisplatin directly combined with STS. However, when cisplatin was given first and STS exposure occurred 6 h later, no effect on cisplatin cytotoxicity was observed. In a subcutaneous neuroblastoma xenograft model in nu/nu mice, mice receiving cisplatin alone or cisplatin + STS at 6 h had significantly better progression-free survival rates (P < 0.03) compared with controls or mice treated with cisplatin + STS concurrently. There was no statistically significant difference in outcomes between mice treated with cisplatin alone and the group treated with cisplatin followed by STS 6 h later (P = 0.9). CONCLUSION: These preclinical data suggest that the use of STS 6 h after cisplatin for otoprotection is unlikely to compromise the antineuroblastoma activity of cisplatin.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Neuroblastoma/tratamento farmacológico , Tiossulfatos/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Carboplatina/uso terapêutico , Carboplatina/toxicidade , Hipóxia Celular , Linhagem Celular Tumoral , Cisplatino/farmacocinética , Cisplatino/toxicidade , Humanos , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Radiossensibilizantes/uso terapêutico , Radiossensibilizantes/toxicidade , Tiossulfatos/farmacocinética , Tiossulfatos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Life Sci Alliance ; 2(3)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133614

RESUMO

Targeting PD-1/PD-L1 is only effective in ∼20% of lung cancer patients, but determinants of this response are poorly defined. We previously observed differential responses of two murine K-Ras-mutant lung cancer cell lines to anti-PD-1 therapy: CMT167 tumors were eliminated, whereas Lewis Lung Carcinoma (LLC) tumors were resistant. The goal of this study was to define mechanism(s) mediating this difference. RNA sequencing analysis of cancer cells recovered from lung tumors revealed that CMT167 cells induced an IFNγ signature that was blunted in LLC cells. Silencing Ifngr1 in CMT167 resulted in tumors resistant to IFNγ and anti-PD-1 therapy. Conversely, LLC cells had high basal expression of SOCS1, an inhibitor of IFNγ. Silencing Socs1 increased response to IFNγ in vitro and sensitized tumors to anti-PD-1. This was associated with a reshaped tumor microenvironment, characterized by enhanced T cell infiltration and enrichment of PD-L1hi myeloid cells. These studies demonstrate that targeted enhancement of tumor-intrinsic IFNγ signaling can induce a cascade of changes associated with increased therapeutic vulnerability.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Interferon gama/farmacologia , Neoplasias Pulmonares/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL9/metabolismo , Modelos Animais de Doenças , Inativação Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Terapia de Alvo Molecular , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
15.
Oncoimmunology ; 7(5): e1423182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721380

RESUMO

Lung-specific overexpression of prostacyclin synthase (PGIS) decreases tumor initiation in murine lung cancer models. Prostacyclin analogs prevent lung tumor formation in mice and reverse bronchial dysplasia in former smokers. However, the effect of prostacyclin on lung cancer progression has not been well studied. We investigated the effects of pulmonary PGIS overexpression in an orthotopic immunocompetent mouse model of lung cancer using two murine lung cancer cell lines. Pulmonary PGIS overexpression significantly inhibited CMT167 lung tumor growth, increased CXCL9 expression, and increased CD4+ tumor-infiltrating lymphocytes. Immunodepletion of CD4+ T cells abolished the inhibitory effect of pulmonary PGIS overexpression on CMT167 lung tumor growth. In contrast, pulmonary PGIS overexpression failed to inhibit growth of a second murine lung cancer cell line, Lewis Lung Carcinoma (LLC) cells, and failed to increase CXCL9 expression or CD4+ T lymphocytes in LLC lung tumors. Transcriptome profiling of CMT167 cells and LLC cells recovered from tumor-bearing mice demonstrated that in vivo, CMT167 cells but not LLC cells express MHC class II genes and cofactors necessary for MHC class II processing and presentation. These data demonstrate that prostacyclin can inhibit lung cancer progression and suggest that prostacyclin analogs may serve as novel immunomodulatory agents in a subset of lung cancer patients. Moreover, expression of MHC Class II by lung cancer cells may represent a biomarker for response to prostacyclin.

16.
Cancer Res ; 78(1): 143-156, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118090

RESUMO

The complement cascade is a part of the innate immune system that acts primarily to remove pathogens and injured cells. However, complement activation is also peculiarly associated with tumor progression. Here we report mechanistic insights into this association in multiple immunocompetent orthotopic models of lung cancer. After tumor engraftment, we observed systemic activation of the complement cascade as reflected by elevated levels of the key regulator C3a. Notably, growth of primary tumors and metastases was both strongly inhibited in C3-deficient mice (C3-/- mice), with tumors undetectable in many subjects. Growth inhibition was associated with increased numbers of IFNγ+/TNFα+/IL10+ CD4+ and CD8+ T cells. Immunodepletion of CD4+ but not CD8+ T cells in tumor-bearing subjects reversed the inhibitory effects of C3 deletion. Similarly, antagonists of the C3a or C5a receptors inhibited tumor growth. Investigations using multiple tumor cell lines in the orthotopic model suggested the involvement of a C3/C3 receptor autocrine signaling loop in regulating tumor growth. Overall, our findings offer functional evidence that complement activation serves as a critical immunomodulator in lung cancer progression, acting to drive immune escape via a C3/C5-dependent pathway.Significance: This provocative study suggests that inhibiting complement activation may heighten immunotherapeutic responses in lung cancer, offering findings with immediate implications, given the existing clinical availability of complement antagonists. Cancer Res; 78(1); 143-56. ©2017 AACR.


Assuntos
Adenocarcinoma/imunologia , Linfócitos T CD4-Positivos/imunologia , Ativação do Complemento , Neoplasias Pulmonares/patologia , Receptores de Complemento/imunologia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Linfócitos T CD4-Positivos/patologia , Linhagem Celular Tumoral , Complemento C3/genética , Complemento C3d/metabolismo , Feminino , Humanos , Imunoglobulina M/metabolismo , Neoplasias Pulmonares/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/genética , Receptores de Complemento/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
CNS Oncol ; 3(4): 267-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25286038

RESUMO

AIMS: Prophylaxis against Pneumocystis jiroveci pneumonia (PJP) is currently recommended for patients receiving chemoradiation with temozolomide for newly diagnosed glioblastoma multiforme. At our institution, PJP prophylaxis during temozolomide treatment has not been routinely given because of the paucity of supporting data. We investigated the rate of PJP infections in our patients. PATIENTS & METHODS: We conducted a retrospective chart review of 240 brain tumor patients treated between 1999 and 2012 with temozolomide and no PJP prophylaxis, 127 of which received concurrent chemoradiation. RESULTS: One in 240 patients (0.4%; 95% CI: 0.01-2.00; median total dose: 7375 mg/m(2); interquartile range: 1300) were diagnosed with PJP. CONCLUSION: There was a <1% rate of PJP for brain tumor patients treated with temozolomide until progression without PJP prophylaxis.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Dacarbazina/análogos & derivados , Pneumonia por Pneumocystis/induzido quimicamente , Pneumonia por Pneumocystis/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/tratamento farmacológico , Criança , Dacarbazina/efeitos adversos , Feminino , Glioblastoma/tratamento farmacológico , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Linfócitos T/patologia , Temozolomida , Adulto Jovem
20.
Neurol Clin Pract ; 3(6): 469-474, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24353921

RESUMO

Diagnosing dystonia can be challenging and depends on the recognition of subtle clinical signs. Due to clinical heterogeneity, variable age at presentation, and overlapping features with other disorders, dystonia is under-recognized. The presence of dystonic tremor is often a reason for misdiagnosis. We report an illustrative case of a patient with DYT1 dystonia who was originally misdiagnosed with Parkinson disease. Careful physical examination and history-taking can reveal dystonia and prompt appropriate diagnostic studies, which, in turn, can lead to potentially life-changing treatment. Our report illustrates typical challenges in the recognition and diagnosis of dystonia, and serves to increase clinicians' awareness of this disabling, but treatable, condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA