Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 85(12): 2695-2705, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36508333

RESUMO

In this study, we report the isolation, characterization, and synthesis of the peptide BmT-2 belonging to the tryptophyllins family, isolated from the venom of the snake Bothrops moojeni. This is the first time a tryptophyllin is identified in snake venom. We tested whether BmT-2 had cytotoxic effects and antioxidant activity in a set of experiments that included both in vitro and cell-based assays. BmT-2 presented a radical scavenging activity toward ABTS• and AAPH-derived radicals. BmT-2 protected fluorescein, DNA molecules, and human red blood cells (RBCs) from free radicals generated by the thermal decomposition of AAPH. The novel tryptophyllin was not toxic in cell viability tests, where it (up to 0.4 mg/mL) did not cause hemolysis of human RBCs and did not cause significant loss of cell viability, showing a CC50 > 1.5 mM for cytotoxic effects against SK-N-BE(2) neuroblastoma cells. BmT-2 prevented the arsenite-induced upregulation of Nrf2 in Neuro-2a neuroblasts and the phorbol myristate acetate-induced overgeneration of reactive oxygen species and reactive nitrogen species in SK-N-BE(2) neuroblastoma cells. Electronic structure calculations and full atomistic reactive molecular dynamics simulations revealed the relevant contribution of aromatic residues in BmT-2 to its antioxidant properties. Our study presents a novel peptide classified into the family of the tryptophyllins, which has been reported exclusively in amphibians. Despite the promising results on its antioxidant activity and low cytotoxicity, the mechanisms of action of BmT-2 still need to be further elucidated.


Assuntos
Bothrops , Venenos de Crotalídeos , Neuroblastoma , Fármacos Neuroprotetores , Animais , Humanos , Antioxidantes/farmacologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/farmacologia , Peptídeos , Venenos de Serpentes
2.
Food Res Int ; 139: 109906, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509474

RESUMO

Cashew nuts are mainly consumed as a roasted and salted snack. Lately, the industry has gained interest in broken kernels because of their added value. In this study, defatted cashew nut flour (DCF) underwent simulated gastrointestinal digestion to obtain a soluble (CDs) and an insoluble (CDi) digested fraction. These fractions, which resulted from the digestion of a complex matrix, were evaluated for antioxidant capacity of bioaccessible compounds (present on the soluble digested fraction, CDs) and their potential prebiotic effect, considering that the insoluble digested fraction (CDi) could be fermented by the microbiota in the gut. The DCF had a high protein content (40.74%), being nutritionally characterized as a balanced source of amino acids, with a predominance of aromatic amino acids (phenylalanine and tyrosine), threonine and histidine. The digested DCF presented 76.90% of the soluble components of low molecular weight (0.1-2 kDa), which is typical of antioxidant peptides. The soluble digested fraction (CDs) significantly increased the antioxidant capacity in relation to flour in the ORAC and ABTS assays and the aqueous extract presented the highest values (526.0 and 76.64 as µmol Trolox Eq./g sample, respectively). The CDs protected 29.03% of the supercoiled DNA band and ratified the potential antioxidant capacity after GID in a physiological assay. In addition, the insoluble digested fraction showed a potential prebiotic effect for Bifdobacterium lactis BB-12. Finally, simulated gastrointestinal digestion improves the bioaccessibility of CDF antioxidant compounds as a complex matrix, containing low molecular weight peptides and phenolic compounds, which become more available to react with reactive oxygen species (ROS). In addition, the potential prebiotic effect of defatted cashew nut flour has yielded a promising solution for the total reuse of broken cashew nut kernel as a functional food ingredient.


Assuntos
Anacardium , Digestão , Farinha/análise , Humanos , Nozes/química , Fenóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA