Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Nephrol ; 21(1): 47, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050922

RESUMO

BACKGROUND: Kidney transplantation performed in the presence of high-titre donor-specific antibodies (DSA) may result in hyper-acute or accelerated antibody-mediated rejection and rapid allograft loss. Previous studies have shown that this risk may be mitigated with simultaneous liver-kidney transplantation (SLKT); however, the mechanisms are not well defined. Here we report the evolution of pre-formed, high-level DSAs in two highly sensitised SLKT recipients peri-operatively and describe a profound sustained depletion of all DSAs from the time of liver anastomosis with no extra desensitisation therapy required. CASE PRESENTATION: Two patients underwent SLKT and received our centre's standard renal transplant immunosuppression with basiliximab and methylprednisolone for induction therapy and prednisolone, mycophenolate and tacrolimus for maintenance therapy. HLA antibody samples were collected pre-operatively, and immediately post-liver and post-kidney revascularisation, and then regularly in the post-transplant period. Complement Dependant Cytotoxicity (CDC) crossmatches were also performed. Both patients were highly sensitised with a PRA over 97%. One patient had a positive B- and T-cell crossmatch pre-transplant. These positive CDC crossmatches became negative and the level of pre-formed DSAs reduced profoundly and rapidly, within 3 h post-liver revascularisation. The reduction in pre-formed DSAs, regardless of subclass, was seen immediately post-liver revascularisation, before implantation of the renal allografts. No significant reduction in non-donor specific HLA-antibodies was observed. Both patients maintained good graft function with no rejection on kidney allograft protocol biopsies performed at 10-weeks post-transplant. CONCLUSIONS: These cases support the protective immunoregulatory role of the liver in the setting of SLKT, with no extra desensitisation treatment given pre-operatively for these highly sensitised patients.


Assuntos
Antígenos HLA/imunologia , Isoanticorpos/sangue , Transplante de Rim , Transplante de Fígado , Fígado/imunologia , Aloenxertos/imunologia , Feminino , Teste de Histocompatibilidade , Humanos , Imunossupressores/uso terapêutico , Pessoa de Meia-Idade , Imunologia de Transplantes
2.
Materials (Basel) ; 17(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39203230

RESUMO

Wettability is recognized as an important property of implant surfaces for ensuring improved biological responses. However, limited information exists on how bone grafting procedures including materials influence the hydrophilic behavior of implant surfaces. This in vitro study aimed to investigate the influence of two bovine grafting materials after hydration on the wettability of four different disk surfaces: commercially pure titanium (CP-Ti), titanium-zirconium dioxide (TiZrO2-Cerid®), zirconia (SDS®), and niobium. Wettability tests were performed on each of the four implant surfaces with a solution of 0.9% sodium chloride after mixture with W-boneTM (Group A) or Bio-Oss® (Group B) or 0.9% sodium chloride alone (Group C). In total, 360 contact angle measurements were completed with n = 30 per group. Statistical analysis was performed using a one-way analysis with variance (ANOVA) test with a significant mean difference at the 0.05 level. For pure titanium, Group A demonstrated increased hydrophilicity compared to Group B. Both TiZrO2 and zirconia showed significant differences for Groups A, B and C, exhibiting a decrease in hydrophilicity after the use of bovine grafting materials compared to titanium surfaces. Niobium remained consistently hydrophobic. In summary, this study revealed that bovine grafting materials may diminish the hydrophilicity of zirconia surfaces and exert varied effects on titanium and niobium. These findings contribute to the understanding of implant surface interactions with grafting materials, offering insights for optimizing biological responses in implantology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA