Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Transl Anim Sci ; 4(2): txaa012, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32705012

RESUMO

Artificial insemination (AI) is widely used in livestock industries to breed for desirable characteristics and increase yields. The standard practice of storing and transporting bovine semen uses liquid nitrogen (LN), a scarce commodity in many regions of the world. This study explored the feasibility of using dry ice, a more readily available alternative. We developed equipment that dispenses dry ice from widely available liquid carbon dioxide (LCO2) tanks into an easily transportable device. In vivo fertility results with a dry ice cold chain showed no statistical difference to the conventional LN method. In vitro bovine semen analyses also showed that storage under these conditions minimally affects characteristics associated with fertility. A dry ice cold chain system could leverage the global availability of LCO2 to expand the reach of AI and other cold storage applications of biological materials in low-resource settings.

2.
ASAIO J ; 61(6): 701-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26418203

RESUMO

Central venous catheters (CVCs), placed in the superior vena cava (SVC) for hemodialysis or chemotherapy, are routinely filled while not in use with heparin, an anticoagulant, to maintain patency and prevent thrombus formation at the catheter tip. The heparin-locking procedure, however, places the patient at risk for systemic bleeding, as heparin is known to leak from the catheter into the blood stream. We provide evidence from detailed in vitro experiments that shows the driving mechanism behind heparin leakage to be convective-diffusive transport due to the pulsatile flow surrounding the catheter. This novel mechanism is supported by experimental planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements of flow velocity and heparin transport from a CVC placed inside a model SVC inside a pulsatile flow loop. The results predict an initial, fast (<10 s), convection-dominated phase that rapidly depletes the concentration of heparin in the near-tip region, the region of the catheter with side holes. This is followed by a slow, diffusion-limited phase inside the catheter lumen, where the concentration is still high, that is insufficient at replenishing the lost heparin concentration in the near-tip region. The results presented here, which are consistent with previous in vivo estimates of 24 hour leakage rates, predict that the concentration of heparin in the near-tip region is essentially zero for the majority of the interdialytic phase, rendering the heparin locking procedure ineffective.


Assuntos
Anticoagulantes/administração & dosagem , Cateteres Venosos Centrais/efeitos adversos , Heparina/administração & dosagem , Trombose/prevenção & controle , Veia Cava Superior/fisiopatologia , Difusão , Hemodinâmica , Humanos , Modelos Cardiovasculares , Fluxo Sanguíneo Regional/fisiologia , Trombose/etiologia , Veia Cava Superior/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA