Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 11(6): 814, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26063786

RESUMO

Coordination of cell division timing is crucial for proper cell fate specification and tissue growth. However, the differential regulation of cell division timing across or within cell types during metazoan development remains poorly understood. To elucidate the systems-level genetic architecture coordinating division timing, we performed a high-content screening for genes whose depletion produced a significant reduction in the asynchrony of division between sister cells (ADS) compared to that of wild-type during Caenorhabditis elegans embryogenesis. We quantified division timing using 3D time-lapse imaging followed by computer-aided lineage analysis. A total of 822 genes were selected for perturbation based on their conservation and known roles in development. Surprisingly, we find that cell fate determinants are not only essential for establishing fate asymmetry, but also are imperative for setting the ADS regardless of cellular context, indicating a common genetic architecture used by both cellular processes. The fate determinants demonstrate either coupled or separate regulation between the two processes. The temporal coordination appears to facilitate cell migration during fate specification or tissue growth. Our quantitative dataset with cellular resolution provides a resource for future analyses of the genetic control of spatial and temporal coordination during metazoan development.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Diferenciação Celular/genética , Divisão Celular/genética , Desenvolvimento Embrionário , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Linhagem da Célula/genética , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento
2.
Genetics ; 209(1): 37-49, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567658

RESUMO

Intercellular signaling interactions play a key role in breaking fate symmetry during animal development. Identification of signaling interactions at cellular resolution is technically challenging, especially in a developing embryo. Here, we develop a platform that allows automated inference and validation of signaling interactions for every cell cycle of Caenorhabditis elegans embryogenesis. This is achieved by the generation of a systems-level cell contact map, which consists of 1114 highly confident intercellular contacts, by modeling analysis and is validated through cell membrane labeling coupled with cell lineage analysis. We apply the map to identify cell pairs between which a Notch signaling interaction takes place. By generating expression patterns for two ligands and two receptors of the Notch signaling pathway with cellular resolution using the automated expression profiling technique, we are able to refine existing and identify novel Notch interactions during C. elegans embryogenesis. Targeted cell ablation followed by cell lineage analysis demonstrates the roles of signaling interactions during cell division in breaking fate symmetry. Finally, we describe the development of a website that allows online access to the cell-cell contact map for mapping of other signaling interactions by the community. The platform can be adapted to establish cellular interactions from any other signaling pathway.


Assuntos
Ciclo Celular , Desenvolvimento Embrionário , Transdução de Sinais , Animais , Animais Geneticamente Modificados , Biomarcadores , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Comunicação Celular , Linhagem da Célula , Proteínas de Drosophila/metabolismo , Dosagem de Genes , Ligação Proteica , Receptores Notch/metabolismo , Reprodutibilidade dos Testes , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA