Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555252

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by MeCP2 mutations. Nonetheless, the pathophysiological roles of MeCP2 mutations in the etiology of intrinsic cardiac abnormality and sudden death remain unclear. In this study, we performed a detailed functional studies (calcium and electrophysiological analysis) and RNA-sequencing-based transcriptome analysis of a pair of isogenic RTT female patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) that expressed either MeCP2wildtype or MeCP2mutant allele and iPSC-CMs from a non-affected female control. The observations were further confirmed by additional experiments, including Wnt signaling inhibitor treatment, siRNA-based gene silencing, and ion channel blockade. Compared with MeCP2wildtype and control iPSC-CMs, MeCP2mutant iPSC-CMs exhibited prolonged action potential and increased frequency of spontaneous early after polarization. RNA sequencing analysis revealed up-regulation of various Wnt family genes in MeCP2mutant iPSC-CMs. Treatment of MeCP2mutant iPSC-CMs with a Wnt inhibitor XAV939 significantly decreased the ß-catenin protein level and CACN1AC expression and ameliorated their abnormal electrophysiological properties. In summary, our data provide novel insight into the contribution of activation of the Wnt/ß-catenin signaling cascade to the cardiac abnormalities associated with MeCP2 mutations in RTT.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Rett , Humanos , Feminino , Síndrome de Rett/metabolismo , Via de Sinalização Wnt , Miócitos Cardíacos/metabolismo , Linhagem Celular , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação
2.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360897

RESUMO

Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.


Assuntos
Genes Ligados ao Cromossomo X , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Doença de Depósito de Glicogênio Tipo IIb/classificação , Doença de Depósito de Glicogênio Tipo IIb/patologia , Heterozigoto , Humanos , Masculino , Mosaicismo , Inativação do Cromossomo X
3.
Circulation ; 134(18): 1373-1389, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27678261

RESUMO

BACKGROUND: Danon disease is an X-linked disorder that leads to fatal cardiomyopathy caused by a deficiency in lysosome-associated membrane protein-2 (LAMP2). In female patients, a later onset and less severe clinical phenotype have been attributed to the random inactivation of the X chromosome carrying the mutant diseased allele. We generated a patient-specific induced pluripotent stem cell (iPSCs)-based model of Danon disease to evaluate the therapeutic potential of Xi-chromosome reactivation using a DNA methylation inhibitor. METHODS: Using whole-exome sequencing, we identified a nonsense mutation (c.520C>T, exon 4) of the LAMP2 gene in a family with Danon disease. We generated iPSC lines from somatic cells derived from the affected mother and her 2 sons, and we then differentiated them into cardiomyocytes (iPSC-CMs) for modeling the histological and functional signatures, including autophagy failure of Danon disease. RESULTS: Our iPSC-CM platform provides evidence that random inactivation of the wild-type and mutant LAMP2 alleles on the X chromosome is responsible for the unusual phenotype in female patients with Danon disease. In vitro, iPSC-CMs from these patients reproduced the histological features and autophagy failure of Danon disease. Administration of the DNA demethylating agent 5-aza-2'-deoxycytidine reactivated the silent LAMP2 allele in iPSCs and iPSC-CMs in female patients with Danon disease and ameliorated their autophagy failure, supporting the application of a patient-specific iPSC platform for disease modeling and drug screening. CONCLUSIONS: Our iPSC-CM platform provides novel mechanistic and therapeutic insights into the contribution of random X chromosome inactivation to disease phenotype in X-linked Danon disease.


Assuntos
Autofagia , Azacitidina/farmacologia , Cromossomos Humanos X/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo , Adulto , Alelos , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular , Feminino , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/biossíntese , Proteína 2 de Membrana Associada ao Lisossomo/genética , Masculino
4.
Hum Mol Genet ; 22(7): 1395-403, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23300193

RESUMO

In this paper, we report a novel heterozygous mutation of A285V codon conversion on exon 4 of the desmin (DES), using whole exome sequencing (WES) in an isolated proband with documented dilated cardiomyopathy (DCM). This mutation is predicted to cause three-dimensional structure changes of DES. Immunohistological and electron microscopy studies demonstrated diffuse abnormal DES aggregations in DCM-induced-pluripotent stem cell (iPSC)-derived cardiomyocytes, and control-iPSC-derived cardiomyocytes transduced with A285V-DES. DCM-iPSC-derived cardiomyocytes also exhibited functional abnormalities in vitro. This is the first demonstration that patient-specific iPSC-derived cardiomyocytes can be used to provide histological and functional confirmation of a suspected genetic basis for DCM identified by WES.


Assuntos
Cardiomiopatia Dilatada/genética , Desmina/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/metabolismo , Adulto , Sequência de Aminoácidos , Sequência de Bases , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/fisiopatologia , Diferenciação Celular , Desmina/química , Desmina/metabolismo , Exoma , Éxons , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Análise de Sequência de DNA , Volume Sistólico/genética , Ultrassonografia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
5.
Pflugers Arch ; 466(9): 1831-44, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24327207

RESUMO

Friedreich ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is due to GAA repeat expansions within the first intron of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. The triplet codon repeats lead to heterochromatin-mediated gene silencing and loss of frataxin. Nevertheless, inadequacy of existing FRDA-cardiac cellular models limited cardiomyopathy studies. We tested the hypothesis that iron homeostasis deregulation accelerates reduction in energy synthesis dynamics which contributes to impaired cardiac calcium homeostasis and contractile force. Silencing of FXN expressions occurred both in somatic FRDA-skin fibroblasts and two of the induced pluripotent stem cells (iPSC) clones; a sign of stress condition was shown in FRDA-iPSC cardiomyocytes with disorganized mitochondrial network and mitochondrial DNA (mtDNA) depletion; hypertrophic cardiac stress responses were observed by an increase in α-actinin-positive cell sizes revealed by FACS analysis as well as elevation in brain natriuretic peptide (BNP) gene expression; the intracellular iron accumulated in FRDA cardiomyocytes might be due to attenuated negative feedback response of transferring receptor (TSFR) expression and positive feedback response of ferritin (FTH1); energy synthesis dynamics, in terms of ATP production rate, was impaired in FRDA-iPSC cardiomyocytes, which were prone to iron overload condition. Energetic insufficiency determined slower Ca(2+) transients by retarding calcium reuptake to sarcoplasmic reticulum (SR) and impaired the positive inotropic and chronotropic responses to adrenergic stimulation. Our data showed for the first time that FRDA-iPSCs cardiac derivatives represent promising models to study cardiac stress response due to impaired iron homeostasis condition and mitochondrial damages. The cardiomyopathy phenotype was accelerated in an iron-overloaded condition early in calcium homeostasis aspect.


Assuntos
Cardiomiopatias , Ataxia de Friedreich/complicações , Técnicas In Vitro , Células-Tronco Pluripotentes , Adulto , Cardiomiopatias/etiologia , Feminino , Ataxia de Friedreich/genética , Humanos , Sobrecarga de Ferro/complicações , Proteínas de Ligação ao Ferro/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Frataxina
6.
Hum Mol Genet ; 21(1): 32-45, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21949351

RESUMO

Many human diseases share a developmental origin that manifests during childhood or maturity. Aneuploid syndromes are caused by supernumerary or reduced number of chromosomes and represent an extreme example of developmental disease, as they have devastating consequences before and after birth. Investigating how alterations in gene dosage drive these conditions is relevant because it might help treat some clinical aspects. It may also provide explanations as to how quantitative differences in gene expression determine phenotypic diversity and disease susceptibility among natural populations. Here, we aimed to produce induced pluripotent stem cell (iPSC) lines that can be used to improve our understanding of aneuploid syndromes. We have generated iPSCs from monosomy X [Turner syndrome (TS)], trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome) and partial trisomy 11;22 (Emanuel syndrome), using either skin fibroblasts from affected individuals or amniocytes from antenatal diagnostic tests. These cell lines stably maintain the karyotype of the donors and behave like embryonic stem cells in all tested assays. TS iPSCs were used for further studies including global gene expression analysis and tissue-specific directed differentiation. Multiple clones displayed lower levels of the pseudoautosomal genes ASMTL and PPP2R3B than the controls. Moreover, they could be transformed into neural-like, hepatocyte-like and heart-like cells, but displayed insufficient up-regulation of the pseudoautosomal placental gene CSF2RA during embryoid body formation. These data support that abnormal organogenesis and early lethality in TS are not caused by a tissue-specific differentiation blockade, but rather involves other abnormalities including impaired placentation.


Assuntos
Aneuploidia , Transtornos Cromossômicos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Células Cultivadas , Transtornos Cromossômicos/metabolismo , Transtornos Cromossômicos/fisiopatologia , Feminino , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Modelos Genéticos
7.
Exp Physiol ; 99(1): 220-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036592

RESUMO

The carotid body (CB) plays an important role in the alteration of cardiorespiratory activity in chronic intermittent hypoxia (IH) associated with sleep-disordered breathing, which may be mediated by local expression of the renin-angiotensin system (RAS). We hypothesized a pathogenic role for IH-induced RAS expression in the CB. The CB expression of RAS components was examined in rats exposed to IH resembling a severe sleep-apnoeic condition for 7 days. In situ hybridization showed an elevated expression of angiotensinogen in the CB glomus cells in the hypoxic group when compared with the normoxic control group. Immunohistochemical studies and Western blot analysis revealed increases in the protein level of both angiotensinogen and angiotensin II type 1 (AT1) receptors in the hypoxic group, which were localized to the glomic clusters containing tyrosine hydroxylase. RT-PCR studies confirmed that levels of the mRNA expression of angiotensinogen, angiotensin-converting enzyme, AT1a and AT2 receptors were significantly increased in the CBs of the hypoxic rats. Functionally, the [Ca(2+)]i response to exogenous angiotensin II was enhanced in fura-2-loaded glomus cells dissociated from hypoxic rats when compared with those of the normoxic control animals. Pretreatment with losartan, but not PD123319, abolished the angiotensin II-induced [Ca(2+)]i response, suggesting an involvement of AT1 receptors. Moreover, daily treatment of the IH group of rats with losartan attenuated the levels of oxidative stress, gp91(phox) expression and macrophage infiltration in the CB. Collectively, the upregulated local RAS expression could play a pathogenic role in the augmented CB activity and local inflammation via AT1 receptor activation during IH conditions in patients with sleep-disordered breathing.


Assuntos
Corpo Carotídeo/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Sistema Renina-Angiotensina/genética , Regulação para Cima/genética , Angiotensina II/genética , Angiotensina II/metabolismo , Angiotensinogênio/genética , Angiotensinogênio/metabolismo , Animais , Cálcio/metabolismo , Fura-2/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Síndromes da Apneia do Sono/genética , Síndromes da Apneia do Sono/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Histochem Cell Biol ; 137(3): 303-17, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22187044

RESUMO

Maladaptive changes in the carotid body (CB) induced by chronic intermittent hypoxia (IH) account for the pathogenesis of cardiovascular morbidity in patients with sleep-disordered breathing. We postulated that the proinflammatory cytokines, namely interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α, and cytokine receptors (IL-1r1, gp130 and TNFr1) locally expressed in the rat CB play a pathophysiological role in IH-induced CB inflammation. Results showed increased levels of oxidative stress (serum 8-isoprostane and nitrotyrosine in the CB) in rats with 7-day IH treatment resembling recurrent apneic conditions when compared with the normoxic control. Local inflammation shown by the amount of ED1-containing cells (macrophage infiltration) and the gene transcripts of NADPH oxidase subunits (gp91(phox) and p22(phox)) and chemokines (MCP-1, CCR2, MIP-1α, MIP-1ß and ICAM-1) in the CB were significantly more in the hypoxic group than in the control. In addition, the cytokines and receptors were expressed in the lobules of chemosensitive glomus cells containing tyrosine hydroxylase and the levels of expressions were significantly increased in the hypoxic group. Exogenous cytokines elevated the intracellular calcium ([Ca(2+)](i)) response to acute hypoxia in the dissociated glomus cells. The effect of cytokines on the [Ca(2+)](i) response was significantly greater in the hypoxic than in the normoxic group. Moreover, daily treatment of IH rats with anti-inflammatory drugs (dexamethasone or ibuprofen) attenuated the levels of oxidative stress, gp91(phox) expression and macrophage infiltration in the CB. Collectively, these results suggest that the upregulated expression of proinflammatory cytokine pathways could mediate the local inflammation and functional alteration of the CB under chronic IH conditions.


Assuntos
Corpo Carotídeo/imunologia , Citocinas/imunologia , Hipóxia/imunologia , Transdução de Sinais/imunologia , Síndromes da Apneia do Sono/imunologia , Vasculite/imunologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Cálcio/metabolismo , Artéria Carótida Interna/imunologia , Artéria Carótida Interna/metabolismo , Corpo Carotídeo/metabolismo , Doença Crônica , Citocinas/genética , Citocinas/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Ibuprofeno/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Ratos , Ratos Sprague-Dawley , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Receptores de Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Síndromes da Apneia do Sono/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Vasculite/tratamento farmacológico , Vasculite/metabolismo
9.
J Am Soc Nephrol ; 22(7): 1221-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21636641

RESUMO

Forced expression of selected transcription factors can transform somatic cells into embryonic stem cell (ESC)-like cells, termed induced pluripotent stem cells (iPSCs). There is no consensus regarding the preferred tissue from which to harvest donor cells for reprogramming into iPSCs, and some donor cell types may be more prone than others to accumulation of epigenetic imprints and somatic cell mutations. Here, we present a simple, reproducible, noninvasive method for generating human iPSCs from renal tubular cells present in urine. This procedure eliminates many problems associated with other protocols, and the resulting iPSCs display an excellent ability to differentiate. These data suggest that urine may be a preferred source for generating iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Túbulos Renais/citologia , Urina/citologia , Idoso , Feminino , Técnicas de Transferência de Genes , Humanos , Masculino , Adulto Jovem
10.
Methods Mol Biol ; 2429: 379-390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507175

RESUMO

Primary human hepatocytes (PHHs) are widely used as an in vitro model to evaluate various aspects of human hepatic physiology and pathology. However, PHHs isolated from the human liver have very limited ability for ex vivo expansion in culture. Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice are proven to be an ideal bioincubator for repopulation of PHHs. The human liver chimeric FRG mouse is not only a humanized animal model for disease study and drug screening in vivo, but also a potential source of PHHs for cellular therapy. This chapter describes experimental protocols to generate chimeric FRG mice with humanized liver and to isolate PHHs from human liver chimeric FRG mice. Using these methods, PHHs can be expanded to more than 100-fold for harvesting.


Assuntos
Hepatócitos , Fígado , Animais , Quimera , Modelos Animais de Doenças , Humanos , Camundongos
11.
Biomed Pharmacother ; 152: 113197, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35687913

RESUMO

BACKGROUND AND AIMS: Wilson's disease (WD) is an inherited disorder of copper metabolism with predominant hepatic manifestations. Left untreated, it can be fatal. Current therapies focus on treating copper overload rather than targeting the pathophysiology of copper-induced liver injuries. We sought to investigate whether liposome-encapsulated curcumin (LEC) could attenuate the underlying pathophysiology of WD in a mouse model of WD. APPROACH AND RESULTS: Subcutaneous administration in a WD mouse model with ATP7B knockout (Atp7b-/-) resulted in robust delivery of LEC to the liver as determined by in-vitro and in-vivo imaging. Treatment with LEC attenuated hepatic injuries, restored lipid metabolism and decreased hepatic inflammation and fibrosis, and thus hepatosplenomegaly in Atp7b-/- mice. Mechanistically, LEC decreased hepatic immune cell and macrophage infiltration and attenuated the hepatic up-regulation of p65 by preventing cellular translocation of high-mobility group box-1 (HMGB-1). Moreover, decreased translocation of HMGB1 was associated with reduced splenic CD11b+/CD43+/Ly6CHi inflammatory monocyte expansion and circulating level of proinflammatory cytokines. Nevertheless there was no change in expression of oxidative stress-related genes or significant copper chelation effect of LEC in Atp7b-/- mice. CONCLUSION: Our results indicate that treatment with subcutaneous LEC can attenuate copper-induced liver injury in an animal model of WD via suppression of HMGB1-mediated hepatic and systemic inflammation. These findings provide important proof-of-principle data to develop LEC as a novel therapy for WD as well as other inflammatory liver diseases.


Assuntos
Curcumina , Proteína HMGB1 , Degeneração Hepatolenticular , Adenosina Trifosfatases/metabolismo , Animais , Cobre/metabolismo , Curcumina/metabolismo , Curcumina/farmacologia , Modelos Animais de Doenças , Fibrose , Proteína HMGB1/metabolismo , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Inflamação/metabolismo , Lipossomos , Fígado/metabolismo , Camundongos
12.
JHEP Rep ; 4(1): 100389, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34877514

RESUMO

BACKGROUND & AIMS: Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism caused by loss-of-function mutations in ATP7B, which encodes a copper-transporting protein. It is characterized by excessive copper deposition in tissues, predominantly in the liver and brain. We sought to investigate whether gene-corrected patient-specific induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps) could serve as an autologous cell source for cellular transplantation therapy in WD. METHODS: We first compared the in vitro phenotype and cellular function of ATP7B before and after gene correction using CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs) in iHeps (derived from patients with WD) which were homozygous for the ATP7B R778L mutation (ATP7BR778L/R778L). Next, we evaluated the in vivo therapeutic potential of cellular transplantation of WD gene-corrected iHeps in an immunodeficient WD mouse model (Atp7b -/- / Rag2 -/- / Il2rg -/- ; ARG). RESULTS: We successfully created iPSCs with heterozygous gene correction carrying 1 allele of the wild-type ATP7B gene (ATP7BWT/-) using CRISPR/Cas9 and ssODNs. Compared with ATP7BR778L/R778L iHeps, gene-corrected ATP7BWT/- iHeps restored i n vitro ATP7B subcellular localization, its subcellular trafficking in response to copper overload and its copper exportation function. Moreover, in vivo cellular transplantation of ATP7BWT/- iHeps into ARG mice via intra-splenic injection significantly attenuated the hepatic manifestations of WD. Liver function improved and liver fibrosis decreased due to reductions in hepatic copper accumulation and consequently copper-induced hepatocyte toxicity. CONCLUSIONS: Our findings demonstrate that gene-corrected patient-specific iPSC-derived iHeps can rescue the in vitro and in vivo disease phenotypes of WD. These proof-of-principle data suggest that iHeps derived from gene-corrected WD iPSCs have potential use as an autologous ex vivo cell source for in vivo therapy of WD as well as other inherited liver disorders. LAY SUMMARY: Gene correction restored ATP7B function in hepatocytes derived from induced pluripotent stem cells that originated from a patient with Wilson's disease. These gene-corrected hepatocytes are potential cell sources for autologous cell therapy in patients with Wilson's disease.

13.
Acta Pharmacol Sin ; 32(1): 52-61, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21151160

RESUMO

AIM: To investigate the effects of the cardiotonic steroid, ouabain, on cardiac differentiation of murine embyronic stem cells (mESCs). METHODS: Cardiac differentiation of murine ESCs was enhanced by standard hanging drop method in the presence of ouabain (20 µmol/L) for 7 d. The dissociated ES derived cardiomyocytes were examined by flow cytometry, RT-PCR and confocal calcium imaging. RESULTS: Compared with control, mESCs treated with ouabain (20 µmol/L) yielded a significantly higher percentage of cardiomyocytes, and significantly increased expression of a panel of cardiac markers including Nkx 2.5, α-MHC, and ß-MHC. The α1 and 2- isoforms Na(+)/K(+)-ATPase, on which ouabain acted, were also increased in mESCs during differentiation. Among the three MAPKs involved in the cardiac hypertrophy pathway, ouabain enhanced ERK1/2 activation. Blockage of the Erk1/2 pathway by U0126 (10 µmol/L) inhibited cardiac differentiation while ouabain (20 µmol/L) rescued the effect. Interestingly, the expression of calcium handling proteins, including ryanodine receptor (RyR2) and sacroplasmic recticulum Ca(2+) ATPase (SERCA2a) was also upregulated in ouabain-treated mESCs. ESC-derived cardiomyocyes (CM) treated with ouabain appeared to have more mature calcium handling. As demonstrated by confocal Ca(2+) imaging, cardiomyocytes isolated from ouabain-treated mESCs exhibited higher maximum upstroke velocity (P<0.01) and maximum decay velocity (P<0.05), as well as a higher amplitude of caffeine induced Ca(2+) transient (P<0.05), suggesting more mature sarcoplasmic reticulum (SR). CONCLUSION: Ouabain induces cardiac differentiation and maturation of mESC-derived cardiomyocytes via activation of Erk1/2 and more mature SR for calcium handling.


Assuntos
Cardiotônicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/citologia , Ouabaína/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Expressão Gênica/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Transdução de Sinais
14.
J Mol Cell Cardiol ; 48(6): 1129-37, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20116384

RESUMO

Hypoxia plays an important role in the proliferation, differentiation and maintenance of the cardiovascular system during development. While low oxygen tension appears to direct the cultured embryonic stem cells (ESCs) to differentiate into cardiomyocytes, the underlying molecular mechanism remains unclear. At a molecular level, hypoxia inducible factor-1 (HIF-1) plays an important role in handling the hypoxia signal. In the present study, we demonstrated that expression of exogenous HIF-1 alpha cDNA into murine ESCs significantly promoted cardiogenesis as indicated by a higher percentage of beating embryoid body and troponin-T positive cell counts as well as increased expression of early and late cardiac markers, such as GATA-binding protein 4 and 6, NK2 transcription factor related locus 5, alpha-myosin heavy chain, beta-myosin heavy chain and myosin light chain 2 ventricular transcripts. In addition, the transduced cells exhibited increased mRNA levels of cardiotrophin-1 and vascular endothelial growth factor, along with phosphorylation of eNOS [p-eNOS (ser1171)]. Application of NOS inhibitors, diphenyleneiodonium chloride (DPI), N(omega)-Nitro-L-arginine methyl ester hydrochloride (L-NAME) or N(omega)-Nitro-L-arginine (L-NNA) abolished the HIF-1 alpha stimulated cardiac differentiation. With the clues of upregulated mRNA expression of calcium handling proteins, ryanodine receptor 2, sodium calcium exchanger and sarcoplasmic/endoplasmic reticulum calcium ATPase, in the transduced HIF-1 alpha ESCs, further study indicated that the maximum upstroke and decay velocity was significantly increased in both non-caffeine and caffeine-induced calcium transient in ESCs-derived cardiomyocytes. This suggests a well developed function of the sarcoplasmic reticulum in ESC-derived cardiomyocytes. Electrophysiological study also indicated that a portion of the HIF-1 alpha-transduced cells exhibited prominent phase-4 depolarization. These findings suggest that keen activation of the HIF-1 pathway enhances differentiation and maturation of cardiomyocytes derived from ESCs.


Assuntos
Células-Tronco Embrionárias/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Miocárdio/metabolismo , Animais , Diferenciação Celular , Citocinas/biossíntese , Coração/fisiologia , Hipóxia/metabolismo , Camundongos , Modelos Biológicos , RNA Mensageiro/metabolismo , Transdução de Sinais , Troponina T/biossíntese , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Europace ; 12(4): 517-21, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19951966

RESUMO

AIMS: To determine whether the number of circulating endothelial progenitor cells (EPCs) in patients with persistent atrial fibrillation (AF) predicts arrhythmia recurrence after direct current cardioversion (DCCV). METHODS AND RESULTS: The numbers of circulating CD34+/KDR+ EPCs were determined with flow cytometry in 51 consecutive patients with persistent AF [the mean age: 67 +/- 1.3 years, male (65%)] prior to DCCV and were compared with that of age- and sex-matched controls, and cohorts of patients with coronary artery disease and ischaemic stroke. The AF recurrence rate at 1 year was also determined. The EPCs in patients with persistent AF, patients with coronary artery disease, and patients with ischaemic stroke were significantly lower than that of the age- and sex-matched controls (P < 0.01). One year after successful DCCV, patients with high EPC count (50th to 100th percentile) had a higher recurrence rate of AF when compared with those with low EPC count (less than 50th percentile) (73 vs. 40%, P = 0.02). Cox regression analysis revealed the high EPC count was the only independent predictors for the AF recurrence (HR: 2.29, P = 0.047). CONCLUSION: The number of EPCs is reduced in patients with persistent AF and predicts the recurrence of AF after successful DCCV.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/terapia , Cardioversão Elétrica , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Idoso , Biomarcadores , Doença da Artéria Coronariana/patologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Valor Preditivo dos Testes , Recidiva , Nó Sinoatrial/fisiologia , Acidente Vascular Cerebral/patologia
17.
Int J Cardiol ; 298: 85-92, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668660

RESUMO

AIMS: To recapitulate progressive human dilated cardiomyopathy (DCM) and heart block in the Lmna R225X mutant mice model and investigate the molecular basis of LMNA mutation induced cardiac conduction disorders (CD); To investigate the potential interventional impact of exercise endurance. METHODS AND RESULTS: A Lmna R225X knock-in mice model in either heterozygous or homozygous genotype was generated. Electrical remodeling was observed with higher occurrence of AV block from neonatal and aged mutant mice as measured by surface electrocardiogram and atrio-ventricular Wenckebach point detection. Histological and molecular profiles revealed an increase in apoptotic cells and activation of caspase-3 activities in heart tissue. Upon aging, extracellular cellular matrix (ECM) remodeling appeared with accumulation of collagen in Lmna R225X mutant hearts as visualized by Masson's trichrome stain. This could be explained by the upregulated ECM gene expression, such as Fibronectin: Fn1, collagen: Col12a1, intergrin: Itgb2 and 3, as detected by microarray gene chip. Also, endurance exercise for 3 month improved the ventricular ejection fraction, attenuated fibrosis and cardiomyocytes apoptosis in the aged mutant mice. CONCLUSIONS: The mechanism of LMNA nonsense mutation induced cardiac conduction defects through AV node fibrosis is due to upregulated ECM gene expression upon activation of cardiac apoptosis. Lmna R225X mutant mice hold the potential for serving as in vivo models to explore the mechanism and therapeutic methods for AV block or myopathy associated with the aging process.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Cardiomiopatia Dilatada/genética , Códon sem Sentido/genética , Lamina Tipo A/genética , Condicionamento Físico Animal/fisiologia , Animais , Animais Recém-Nascidos , Doença do Sistema de Condução Cardíaco/metabolismo , Doença do Sistema de Condução Cardíaco/terapia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/terapia , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Frequência Cardíaca/fisiologia , Lamina Tipo A/biossíntese , Camundongos , Condicionamento Físico Animal/métodos
18.
Biochem Biophys Res Commun ; 379(4): 898-903, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19135029

RESUMO

The therapeutic potential of transplantation of embryonic stem cells (ESCs) in animal model of myocardial infarction has been consistently demonstrated. The development of superparamagnetic iron oxide (SPIO) nanoparticles labeling and cardiac magnetic resonance imaging (MRI) have been increasingly used to track the migration of transplanted cells in vivo allowing cell fate determination. However, the impact of SPIO- labeling on cell phenotype and cardiac differentiation capacity of ESCs remains unclear. In this study, we demonstrated that ESCs labeled with SPIO compared to their unlabeled counterparts had similar cardiogenic capacity, and SPIO-labeling did not affect calcium-handling property of ESC-derived cardiomyocytes. Moreover, transplantation of SPIO-labeled ESCs via direct intra-myocardial injection to infarct myocardium resulted in significant improvement in heart function. These findings demonstrated the feasibility of in vivo ESC tracking using SPIO-labeling and cardiac MRI without affecting the cardiac differentiation potential and functional properties of ESCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Compostos Férricos/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Nanopartículas/efeitos adversos , Coloração e Rotulagem/métodos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/biossíntese , Imageamento por Ressonância Magnética/métodos , Camundongos , Miócitos Cardíacos/citologia
19.
J Neurochem ; 107(2): 478-87, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18717816

RESUMO

Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells.


Assuntos
Caveolina 1/metabolismo , Hipóxia Celular/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Análise de Variância , Anexina A5/metabolismo , Caveolina 1/genética , Caveolina 2/genética , Caveolina 2/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DEET/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Neuroblastoma , Óxido Nítrico/genética , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção/métodos
20.
Sci Rep ; 8(1): 14872, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291295

RESUMO

Empagliflozin, a sodium-glucose co-transporter (SGLT) inhibitor, reduces heart failure and sudden cardiac death but the underlying mechanisms remain elusive. In cardiomyocytes, SGLT1 and SGLT2 expression is upregulated in diabetes mellitus, heart failure, and myocardial infarction. We hypothesise that empagliflozin exerts direct effects on cardiomyocytes that attenuate diabetic cardiomyopathy. To test this hypothesis, cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were used to test the potential effects of empagliflozin on neutralization of cardiac dysfunction induced by diabetic-like cultures. Our results indicated that insulin-free high glucose culture significantly increased the size of and NPPB, SGLT1 and SGLT2 expression of hiPSC-derived cardiomyocytes. In addition, high glucose-treated hiPSC-derived cardiomyocytes exhibited reduced contractility regardless of the increased calcium transient capacity. Interestingly, application of empagliflozin before or after high glucose treatment effectively reduced the high glucose-induced cardiac abnormalities. Since application of empagliflozin did not significantly alter viability or glycolytic capacity of the hiPSC-derived cardiomyocytes, it is plausible that empagliflozin exerts its effects via the down-regulation of SGLT1, SGLT2 and GLUT1 expression. These observations provide supportive evidence that may help explain its unexpected benefit observed in the EMPA-REG trial.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucose/metabolismo , Glucosídeos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Linhagem Celular , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA