Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Gen Comp Endocrinol ; 350: 114472, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373462

RESUMO

Heart development is a delicate and complex process regulated by coordination of various signaling pathways. In this study, we investigated the role of sox18 in heart development by modulating Wnt/ß-Catenin signaling pathways. Our spatiotemporal expression analysis revealed that sox18 is mainly expressed in the heart, branchial arch, pharyngeal arch, spinal cord, and intersegmental vessels at the tailbud stage of Xenopus tropicalis embryo. Overexpression of sox18 in the X. tropicalis embryos causes heart edema, while loss-of-function of sox18 can change the signal of developmental heart marker gata4 at different stages, suggesting that sox18 plays an essential role in the development of the heart. Knockdown of SOX18 in human umbilical vein endothelial cells suggests a link between Sox18 and ß-CATENIN, a key regulator of the Wnt signaling pathway. Sox18 negatively regulates islet1 and tbx3, the downstream factors of Wnt/ß-Catenin signaling, during the linear heart tube formation and the heart looping stage. Taken together, our findings highlight the crucial role of Sox18 in the development of the heart via inhibiting Wnt/ß-Catenin signaling.


Assuntos
Fatores de Transcrição SOXF , Proteínas de Xenopus , beta Catenina , Animais , Humanos , beta Catenina/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Via de Sinalização Wnt , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
2.
PLoS Biol ; 18(9): e3000636, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991578

RESUMO

The Myriapoda, composed of millipedes and centipedes, is a fascinating but poorly understood branch of life, including species with a highly unusual body plan and a range of unique adaptations to their environment. Here, we sequenced and assembled 2 chromosomal-level genomes of the millipedes Helicorthomorpha holstii (assembly size = 182 Mb; shortest scaffold/contig length needed to cover 50% of the genome [N50] = 18.11 Mb mainly on 8 pseudomolecules) and Trigoniulus corallinus (assembly size = 449 Mb, N50 = 26.78 Mb mainly on 17 pseudomolecules). Unique genomic features, patterns of gene regulation, and defence systems in millipedes, not observed in other arthropods, are revealed. Both repeat content and intron size are major contributors to the observed differences in millipede genome size. Tight Hox and the first loose ecdysozoan ParaHox homeobox clusters are identified, and a myriapod-specific genomic rearrangement including Hox3 is also observed. The Argonaute (AGO) proteins for loading small RNAs are duplicated in both millipedes, but unlike in insects, an AGO duplicate has become a pseudogene. Evidence of post-transcriptional modification in small RNAs-including species-specific microRNA arm switching-providing differential gene regulation is also obtained. Millipedes possesses a unique ozadene defensive gland unlike the venomous forcipules found in centipedes. We identify sets of genes associated with the ozadene that play roles in chemical defence as well as antimicrobial activity. Macro-synteny analyses revealed highly conserved genomic blocks between the 2 millipedes and deuterostomes. Collectively, our analyses of millipede genomes reveal that a series of unique adaptations have occurred in this major lineage of arthropod diversity. The 2 high-quality millipede genomes provided here shed new light on the conserved and lineage-specific features of millipedes and centipedes. These findings demonstrate the importance of the consideration of both centipede and millipede genomes-and in particular the reconstruction of the myriapod ancestral situation-for future research to improve understanding of arthropod evolution, and animal evolutionary genomics more widely.


Assuntos
Adaptação Biológica/genética , Artrópodes , Evolução Molecular , Genoma/genética , Animais , Artrópodes/classificação , Artrópodes/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , Genes Homeobox , Genoma de Inseto , Insetos/classificação , Insetos/genética , MicroRNAs/genética , Filogenia , Sintenia
3.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955768

RESUMO

Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.


Assuntos
Glycine max , Proteômica , Humanos , Nitrogênio/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Xilema/metabolismo
4.
J Proteome Res ; 20(9): 4331-4345, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34327993

RESUMO

The heterogeneity of histone H3 proteoforms makes histone H3 top-down analysis challenging. To enhance the detection coverage of the proteoforms, performing liquid chromatography (LC) front-end to mass spectrometry (MS) detection is recommended. Here, using optimized electron-transfer/high-energy collision dissociation (EThcD) parameters, we have conducted a proteoform-spectrum match (PrSM)-level side-by-side comparison of reversed-phase LC-MS (RPLC-MS), "dual-gradient" weak cation-exchange/hydrophilic interaction LC-MS (dual-gradient WCX/HILIC-MS), and "organic-rich" WCX/HILIC-MS on the top-down analyses of H3.1, H3.2, and H4 proteins extracted from a HeLa cell culture. While both dual-gradient WCX/HILIC and organic-rich WCX/HILIC could resolve intact H3 and H4 proteoforms by the number of acetylations, the organic-rich method could enhance the separations of different trimethyl/acetyl near-isobaric H3 proteoforms. In comparison with RPLC-MS, both of the WCX/HILIC-MS methods enhanced the qualities of the H3 PrSMs and remarkably improved the range, reproducibility, and confidence in the identifications of H3 proteoforms.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Cromatografia Líquida , Células HeLa , Histonas/metabolismo , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
5.
Plant Physiol ; 182(3): 1359-1374, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882456

RESUMO

Long non-coding RNAs (lncRNAs) are defined as non-protein-coding transcripts that are at least 200 nucleotides long. They are known to play pivotal roles in regulating gene expression, especially during stress responses in plants. We used a large collection of in-house transcriptome data from various soybean (Glycine max and Glycine soja) tissues treated under different conditions to perform a comprehensive identification of soybean lncRNAs. We also retrieved publicly available soybean transcriptome data that were of sufficient quality and sequencing depth to enrich our analysis. In total, RNA-sequencing data of 332 samples were used for this analysis. An integrated reference-based, de novo transcript assembly was developed that identified ∼69,000 lncRNA gene loci. We showed that lncRNAs are distinct from both protein-coding transcripts and genomic background noise in terms of length, number of exons, transposable element composition, and sequence conservation level across legume species. The tissue-specific and time-specific transcriptional responses of the lncRNA genes under some stress conditions may suggest their biological relevance. The transcription start sites of lncRNA gene loci tend to be close to their nearest protein-coding genes, and they may be transcriptionally related to the protein-coding genes, particularly for antisense and intronic lncRNAs. A previously unreported subset of small peptide-coding transcripts was identified from these lncRNA loci via tandem mass spectrometry, which paved the way for investigating their functional roles. Our results also highlight the present inadequacy of the bioinformatic definition of lncRNA, which excludes those lncRNA gene loci with small open reading frames from being regarded as protein-coding.


Assuntos
Glycine max/genética , RNA Longo não Codificante/genética , Fases de Leitura Aberta/genética , Espectrometria de Massas em Tandem
6.
Mol Cell Proteomics ; 15(1): 266-88, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26407991

RESUMO

Understanding molecular mechanisms underlying plant salinity tolerance provides valuable knowledgebase for effective crop improvement through genetic engineering. Current proteomic technologies, which support reliable and high-throughput analyses, have been broadly used for exploring sophisticated molecular networks in plants. In the current study, we compared phosphoproteomic and proteomic changes in roots of different soybean seedlings of a salt-tolerant cultivar (Wenfeng07) and a salt-sensitive cultivar (Union85140) induced by salt stress. The root samples of Wenfeng07 and Union85140 at three-trifoliate stage were collected at 0 h, 0.5 h, 1 h, 4 h, 12 h, 24 h, and 48 h after been treated with 150 mm NaCl. LC-MS/MS based phosphoproteomic analysis of these samples identified a total of 2692 phosphoproteins and 5509 phosphorylation sites. Of these, 2344 phosphoproteins containing 3744 phosphorylation sites were quantitatively analyzed. Our results showed that 1163 phosphorylation sites were differentially phosphorylated in the two compared cultivars. Among them, 10 MYB/MYB transcription factor like proteins were identified with fluctuating phosphorylation modifications at different time points, indicating that their crucial roles in regulating flavonol accumulation might be mediated by phosphorylated modifications. In addition, the protein expression profiles of these two cultivars were compared using LC MS/MS based shotgun proteomic analysis, and expression pattern of all the 89 differentially expressed proteins were independently confirmed by qRT-PCR. Interestingly, the enzymes involved in chalcone metabolic pathway exhibited positive correlations with salt tolerance. We confirmed the functional relevance of chalcone synthase, chalcone isomerase, and cytochrome P450 monooxygenase genes using soybean composites and Arabidopsis thaliana mutants, and found that their salt tolerance were positively regulated by chalcone synthase, but was negatively regulated by chalcone isomerase and cytochrome P450 monooxygenase. A novel salt tolerance pathway involving chalcone metabolism, mostly mediated by phosphorylated MYB transcription factors, was proposed based on our findings. (The mass spectrometry raw data are available via ProteomeXchange with identifier PXD002856).


Assuntos
Glycine max/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Aciltransferases/genética , Aciltransferases/metabolismo , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica/métodos , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Fosfoproteínas/genética , Fosforilação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Proteoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal/genética , Glycine max/classificação , Glycine max/genética , Especificidade da Espécie , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Carcinogenesis ; 36(9): 1008-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26054723

RESUMO

Exosomes are increasingly recognized as important mediators of cell-cell communication in cancer progression through the horizontal transfer of RNAs and proteins to neighboring or distant cells. Hepatocellular carcinoma (HCC) is a highly malignant cancer, whose metastasis is largely influenced by the tumor microenvironment. The possible role of exosomes in the interactions between HCC tumor cell and its surrounding hepatic milieu are however largely unknown. In this study, we comprehensively characterized the exosomal RNA and proteome contents derived from three HCC cell lines (HKCI-C3, HKCI-8 and MHCC97L) and an immortalized hepatocyte line (MIHA) using Ion Torrent sequencing and mass spectrometry, respectively. RNA deep sequencing and proteomic analysis revealed exosomes derived from metastatic HCC cell lines carried a large number of protumorigenic RNAs and proteins, such as MET protooncogene, S100 family members and the caveolins. Of interest, we found that exosomes from motile HCC cell lines could significantly enhance the migratory and invasive abilities of non-motile MIHA cell. We further demonstrated that uptake of these shuttled molecules could trigger PI3K/AKT and MAPK signaling pathways in MIHA with increased secretion of active MMP-2 and MMP-9. Our study showed for the first time that HCC-derived exosomes could mobilize normal hepatocyte, which may have implication in facilitating the protrusive activity of HCC cells through liver parenchyma during the process of metastasis.


Assuntos
Carcinoma Hepatocelular/patologia , Movimento Celular/fisiologia , Exossomos/metabolismo , Neoplasias Hepáticas/patologia , Metástase Neoplásica/patologia , Sequência de Bases , Carcinoma Hepatocelular/metabolismo , Caveolina 1/biossíntese , Caveolina 1/genética , Caveolina 2/biossíntese , Caveolina 2/genética , Comunicação Celular , Linhagem Celular Tumoral , Exossomos/genética , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/biossíntese , Proteínas Proto-Oncogênicas c-met/genética , RNA/genética , Interferência de RNA , RNA Interferente Pequeno , Proteínas S100/biossíntese , Proteínas S100/genética , Análise de Sequência de RNA , Microambiente Tumoral
8.
Mol Pharm ; 11(4): 1282-93, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24555485

RESUMO

Cisplatin-based therapy is one of the most important chemotherapy treatments for cancers. However, its efficacy is greatly limited by drug resistance and undesirable side effects. Therefore, it is of great importance to develop chemosensitizing agents to cisplatin. In the present study, we demonstrated the strategy to use methylseleninic acid (MeSe) as a synergistic agent of cisplatin and elucidated their action mechanisms. The combination of MeSe and cisplatin exhibited synergistic anticancer efficacy and achieved greater selectivity between cancer cell and normal cell. By inducing intracellular oxidative stress, MeSe potentiated cisplatin-induced DNA damage and led to enhanced p53 phosphorylation, followed by increased activation of both mitochondrial and death receptor pathway. Down-regulation of phosphorylated AKT and ERK also played important roles in the synergistic effects of MeSe and cisplatin. Our results suggested that the strategy to apply MeSe as a synergistic agent to cisplatin could be a highly efficient way to achieve anticancer synergism by targeting the intracellular redox system. MeSe might be a candidate for clinical application as a chemosensitizer to cisplatin-based therapy for cancer treatments, especially for hepatocellular carcinoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Compostos Organosselênicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Fosforilação , Transdução de Sinais
9.
Chem Pharm Bull (Tokyo) ; 62(10): 994-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25273058

RESUMO

Selenadiazole derivatives are synthetic organoselenium compounds with improved anticancer activity and greater selectivity than inorganic selenium. In this study, 4-(benzo[c][1,2,5]selenadiazol-6-yl)-benzene-1,2-diamine (BSBD) was shown to induce time- and dose-dependent apoptosis in SWO-38 human glioma cells by accumulation of a sub-G1 cell population, DNA fragmentation, nuclear condensation, caspase activation and poly(ADP-ribose) polymerase (PARP) cleavage. Further mechanistic investigation showed that BSBD treatment induced dephosphorylation of AKT and DNA damage-mediated activation of p53, leading to extensive apoptosis through the mitochondrial pathway. Our findings suggest that BSBD represents a potential human glioma therapeutic.


Assuntos
Antineoplásicos/química , Diaminas/química , Compostos Organosselênicos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Diaminas/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Humanos , Compostos Organosselênicos/toxicidade , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Plant Commun ; : 100891, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561965

RESUMO

Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.

12.
J Proteome Res ; 12(2): 808-20, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23244200

RESUMO

By foliar fortification with selenite, selenium (Se)-enriched rice with a higher Se content and grain yield has been generated. However, the regulatory mechanisms of Se response in rice grains remain unknown; therefore, we carried out a comparative proteomics study in Se-enriched rice grains by using two approaches including two-dimensional gel electrophoresis (2-DE)-coupled MALDI-TOF/TOF MS and 1-DE/LC-FTICR-MS-coupled label-free quantification. By comparison between Se treatment and control, 62 and 250 abundance changed proteins were identified from 2-DE and 1-DE, respectively. By functional classification, proteins involved in metabolism, cell redox regulation, and seed nutritional storage were the most highly affected by Se accumulation. The up-regulation of late embryogenesis abundant proteins as well as proteins involved in sucrose synthesis and other metabolism pathways may contribute to the earlier maturation and higher yield of the Se-enriched rice. In addition, there have been six proteins identified to contain selenoamino acid modification, which is the first identification of selenoproteins in higher plants. In conclusion, our study provided novel insights into Se response in rice grains at the proteome level, which are expected to be highly useful for dissecting the Se response pathways in rice and for the production of Se-enriched rice in the future.


Assuntos
Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/isolamento & purificação , Selênio/metabolismo , Selenoproteínas/isolamento & purificação , Sequência de Aminoácidos , Cromatografia Líquida , Grão Comestível/química , Grão Comestível/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica no Desenvolvimento , Redes e Vias Metabólicas , Dados de Sequência Molecular , Oryza/química , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Selenoproteínas/genética , Selenoproteínas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sacarose/metabolismo
13.
BMC Plant Biol ; 11: 178, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22168212

RESUMO

BACKGROUND: Accumulated evidence suggest that specific patterns of histone posttranslational modifications (PTMs) and their crosstalks may determine transcriptional outcomes. However, the regulatory mechanisms of these "histone codes" in plants remain largely unknown. RESULTS: In this study, we demonstrate for the first time that a salinity stress inducible PHD (plant homeodomain) finger domain containing protein GmPHD5 can read the "histone code" underlying the methylated H3K4. GmPHD5 interacts with other DNA binding proteins, including GmGNAT1 (an acetyl transferase), GmElongin A (a transcription elongation factor) and GmISWI (a chromatin remodeling protein). Our results suggest that GmPHD5 can recognize specific histone methylated H3K4, with preference to di-methylated H3K4. Here, we illustrate that the interaction between GmPHD5 and GmGNAT1 is regulated by the self-acetylation of GmGNAT1, which can also acetylate histone H3. GmGNAT1 exhibits a preference toward acetylated histone H3K14. These results suggest a histone crosstalk between methylated H3K4 and acetylated H3K14. Consistent to its putative roles in gene regulation under salinity stress, we showed that GmPHD5 can bind to the promoters of some confirmed salinity inducible genes in soybean. CONCLUSION: Here, we propose a model suggesting that the nuclear protein GmPHD5 is capable of regulating the crosstalk between histone methylation and histone acetylation of different lysine residues. Nevertheless, GmPHD5 could also recruit chromatin remodeling factors and transcription factors of salt stress inducible genes to regulate their expression in response to salinity stress.


Assuntos
Glycine max/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Salinidade , Proteínas de Soja/metabolismo , Estresse Fisiológico , Acetilação , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Histonas/genética , Proteínas de Homeodomínio/genética , Lisina/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Proteínas de Soja/genética , Glycine max/metabolismo
14.
Mol Cell Proteomics ; 8(11): 2582-94, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19671925

RESUMO

Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-beta1 (IFN-beta1). In this connection, the IFN-beta1-mediated 2',5'-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-beta1-2',5'-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic approach in treating HBV infection.


Assuntos
Antivirais/química , Proteínas de Choque Térmico/metabolismo , Vírus da Hepatite B/metabolismo , Biópsia , Western Blotting , Linhagem Celular , Meios de Cultura , Eletroforese em Gel Bidimensional , Chaperona BiP do Retículo Endoplasmático , Hepatite B/metabolismo , Hepatite B/virologia , Hepatócitos/virologia , Humanos , Interferon beta/metabolismo , Fígado/metabolismo , Espectrometria de Massas/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Adv Exp Med Biol ; 720: 51-68, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21901618

RESUMO

Umbilical cord (UC) and placenta (P) have been suggested as alternatives to bone marrow (BM) as sources of mesenchymal stem cells (MSC) for cell therapy, with both UC- and P-MSC possess immunophenotypic and functional characteristics similar to BM-MSC. However, under defined conditions, the migration capacity of BM- and P-MSC was found to be 5.9- and 3.2-folds higher than that of UC-MSC, respectively. By the use of 2-DE and combined MS and MS/MS analysis, six differentially expressed proteins were identified among these MSC samples, with five of them known to be involved in cell migration as migration enhancing or inhibiting proteins. Interestingly, the expression levels of those proteins reflect perfectly the migration capacity of corresponding MSC, which is also proved by in vitro overexpression and silencing techniques. Our study indicates that a bunch of migration-related proteins are pivotal in governing the migration capacity of MSC.


Assuntos
Células da Medula Óssea/química , Movimento Celular , Células-Tronco Mesenquimais/química , Placenta/química , Proteômica/métodos , Cordão Umbilical/química , Células da Medula Óssea/fisiologia , Catepsina B/análise , Catepsina B/fisiologia , Células Cultivadas , Feminino , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/fisiologia , Inibidor 1 de Ativador de Plasminogênio/análise , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Gravidez
16.
Cells ; 10(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571828

RESUMO

Lymph node metastasis is the most reliable indicator of a poor prognosis for patients with oral tongue cancers. Currently, there are no biomarkers to predict whether a cancer will spread in the future if it has not already spread at the time of diagnosis. The aim of this study was to quantitatively profile the proteomes of extracellular vesicles (EVs) isolated from blood samples taken from patients with oral tongue squamous cell carcinoma with and without lymph node involvement and non-cancer controls. EVs were enriched using size exclusion chromatography (SEC) from pooled plasma samples of patients with non-nodal and nodal oral tongue squamous cell carcinoma (OTSCC) and non-cancer controls. Protein cargo was quantitatively profiled using isobaric labelling (iTRAQ) and two-dimensional high-performance liquid chromatography followed by tandem mass spectrometry. We identified 208 EV associated proteins and, after filtering, generated a short list of 136 proteins. Over 85% of the EV-associated proteins were associated with the GO cellular compartment term "extracellular exosome". Comparisons between non-cancer controls and oral tongue squamous cell carcinoma with and without lymph node involvement revealed 43 unique candidate EV-associated proteins with deregulated expression patterns. The shortlisted EV associated proteins described here may be useful discriminatory biomarkers for differentiating OTSCC with and without nodal disease or non-cancer controls.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Metástase Linfática/patologia , Neoplasias Bucais/metabolismo , Proteoma/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias da Língua/metabolismo , Idoso , Feminino , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Proteômica/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Língua/patologia
17.
Electrophoresis ; 31(10): 1721-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20414880

RESUMO

ProteinChip surface-enhanced laser desorption/ionization technology and magnetic beads-based ClinProt system are commonly used for semi-quantitative profiling of plasma proteome in biomarker discovery. Unfortunately, the proteins/peptides detected by MS are non-recoverable. To obtain the protein identity of a MS peak, additional time-consuming and material-consuming purification steps have to be done. In this study, we developed a magnetic beads-based proteomic fingerprinting method that allowed semi-quantitative proteomic profiling and micropreparative purification of the profiled proteins in parallel. The use of different chromatographic magnetic beads allowed us to obtain different proteomic profiles, which were comparable to those obtained by the ProteinChip surface-enhanced laser desorption/ionization technology. Our assays were semi-quantitative. The normalized peak intensity was proportional to concentration measured by immunoassay. Both intra-assay and inter-assay coefficients of variation of the normalized peak intensities were in the range of 4-30%. Our method only required 2 microL of serum or plasma for generating enough proteins for semi-quantitative profiling by MALDI-TOF-MS as well as for gel electrophoresis and subsequent protein identification. The protein peaks and corresponding gel spots could be easily matched by comparing their intensities and masses. Because of its high efficiency and reproducibility, our method has great potentials in clinical research, especially in biomarker discovery.


Assuntos
Magnetismo , Microesferas , Mapeamento de Peptídeos/métodos , Proteômica/métodos , Proteínas Sanguíneas/análise , Eletroforese em Gel de Poliacrilamida , Humanos , Análise Serial de Proteínas , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Artigo em Inglês | MEDLINE | ID: mdl-20445256

RESUMO

Dribble (DBE) is a Drosophila protein that is essential for ribosome biogenesis. Bioinformatics analysis revealed a folded central domain of DBE which is flanked by structural disorder in the N- and C-terminal regions. The protein fragment spanning amino-acid residues 16-197 (DBE(16-197)) was produced for structural determination. In this report, the crystallization and preliminary X-ray diffraction data analysis of the DBE(16-197) protein domain are described. Crystals of DBE(16-197) were grown by the sitting-drop vapour-diffusion method at 289 K using ammonium phosphate as a precipitant. The crystals belonged to space group P2(1)2(1)2(1). Data were collected that extended to beyond 2 A resolution.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas Nucleares/química , Ribossomos/metabolismo , Animais , Cristalografia por Raios X , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Temperatura
19.
Proteomics ; 9(16): 3950-67, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19701903

RESUMO

Phragmites communis Trin. (common reed) is a recognized model plant for studying its adaptation to contrasting and harsh environments. To understand the inherent molecular basis for its remarkable resistance to combined stresses, we performed a comprehensive proteomic analysis of the leaf proteins from two ecotypes, i.e. swamp and desert dune, naturally growing in the desert region of northwestern China. First, a proteome reference map of Phragmites was established based on the swamp ecotype. Proteins were resolved by 2-D/SDS-PAGE and identified by MALDI-TOF/TOF MS. In total, 177 spots were identified corresponding to 51 proteins. The major proteins identified are proteins involved in photosynthesis, glutathione and ascorbic acid metabolism as well as protein synthesis and quality control. Second, the 2-DE profiles of the two ecotypes were compared quantitatively via DIGE analysis. Compared with swamp ecotype, 51 proteins spots are higher-expressed and 58 protein spots are lower-expressed by twofold or more in desert dune ecotype. Major differences were found for the proteins involved in light reaction of photosynthesis, protein biosynthesis and quality control and antioxidative reactions. The physiological significance of such differences is discussed in the context of a flow of complex events in relation to plant adaptation to combined environmental stresses.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Poaceae/metabolismo , Proteômica , Clima Desértico , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Áreas Alagadas
20.
Proteomics ; 9(1): 20-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19116983

RESUMO

Umbilical cord (UC) and placenta (P) have been suggested as alternatives to bone marrow (BM) as sources of mesenchymal stem cells (MSC) for cell therapy, with both UC- and P-MSC possess immunophenotypic and functional characteristics similar to BM-MSC. However, their migration capacity, which is indispensable during tissue regeneration process, is unclear. Under defined conditions, the migration capacity of BM- and P-MSC was found 5.9- and 3.2-folds higher than that of UC-MSC, respectively. By the use of 2-DE and combined MS and MS/MS analysis, six differentially expressed proteins were identified among these MSC samples, with five of them known to be involved in cell migration as migration enhancing or inhibiting proteins. Consistent with their migration capacity, the levels of migration enhancing proteins including cathepsin B, cathepsin D and prohibitin,were significantly lower in UC-MSC when compared with those in BM- and P-MSC. For the migration inhibiting proteins such as plasminogen activator inhibitor-1 (PAI-1) and manganese superoxide dismutase, higher expression was found in the UC-MSC. We also showed that the overexpression of the PAI-1 impaired the migration capacity of BM- and P-MSC while silencing of PAI-1 enhanced the migration capacity of UC-MSC. Our study indicates that PAI-1 and other migration-related proteins are pivotal in governing the migration capacity of MSC.


Assuntos
Células da Medula Óssea/química , Movimento Celular , Células-Tronco Mesenquimais/química , Placenta/química , Proteoma/análise , Cordão Umbilical/química , Catepsina B/metabolismo , Diferenciação Celular , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Cordão Umbilical/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA