Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 344(Pt B): 126319, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775054

RESUMO

This comparative study investigated the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse (SCB) and rice straw (RS) and their impact on probiotic growth. Generally, CbXyn10C produced more xylose and a higher total phenolic content than Xyn11A. Interestingly, XOS obtained from SCB with CbXyn10C contained significantly more gallic acid than that produced by Xn11A. All selected probiotics thrived in RS-derived XOS, regardless of the enzyme used. However, probiotics grew differently on SCB-derived XOS depending on the enzyme used. All probiotics thrived in Xyn11A-derived XOS from SCB. Only Lactobacillus plantarum thrived on CbXyn10C-derived XOS, while the other two were inhibited. Gallic acid in CbXyn10C-derived XOS from SCB has been linked to probiotic retardation, and gallic acid-enriched broth has been found to inhibit Bifidobacterium longum and Bacillus subtilis, but not L. plantarum. Consequently, the selection of enzymes and plant biomass is crucial for XOS properties and prebiotic effects.


Assuntos
Oryza , Probióticos , Saccharum , Celulose , Glucuronatos , Oligossacarídeos
2.
Int J Biol Macromol ; 170: 240-247, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359611

RESUMO

The purpose of this study was to gain an insight into the effects of mutation-induced binding pocket tilting of the Xyn11A xylanase from Bacillus firmus K-1 in producing a unique hydrolysis characteristic. In this study, the wildtype Xyn11A and its K40L mutant were compared for their hydrolysis patterns on beechwood xylan and xylooligosaccharides of sizes 2 to 6. According to our thin-layer chromatography experiment, the K40L mutant produced a larger amount of xylotetraose leftover than the wildtype. Kinetic determination of the WT and K40L mutant suggested that the higher X4 leftover on TLC was reflected in the decreasing catalytic efficiency (kcat/Km) between enzyme and X4. The mechanisms underlying this efficiency loss were examined through atomistic molecular dynamics (MD) simulations. The MD trajectory analysis showed that the mutation-induced binding pocket tilting resulted in an additional hydrophobic contact between the reducing end of X4 and Trp128. Meanwhile, the interactions between the non-reducing end and the Arg112 residue near the active site became lost, which could decrease the catalytic efficiency. This work suggested that the protein engineering to fine-tune the hydrolysis pattern for some desired xylooligosaccharide products was possible.


Assuntos
Endo-1,4-beta-Xilanases/genética , Xilanos/química , Xilanos/metabolismo , Bacillus firmus/genética , Bacillus firmus/metabolismo , Domínio Catalítico , Endo-1,4-beta-Xilanases/metabolismo , Escherichia coli/genética , Glucuronatos/química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Oligossacarídeos/química , Engenharia de Proteínas/métodos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA