Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
EMBO J ; 42(11): e111901, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917141

RESUMO

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Assuntos
Ácidos Graxos , Malonil Coenzima A , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Oxirredução , Mitocôndrias/metabolismo
2.
Clin Exp Pharmacol Physiol ; 50(11): 878-892, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549882

RESUMO

Targeting greater pump flow and mean arterial pressure (MAP) during cardiopulmonary bypass (CPB) could potentially alleviate renal hypoxia and reduce the risk of postoperative acute kidney injury (AKI). Therefore, in an observational study of 93 patients undergoing on-pump cardiac surgery, we tested whether intraoperative hemodynamic management differed between patients who did and did not develop AKI. Then, in 20 patients, we assessed the feasibility of a larger-scale trial in which patients would be randomized to greater than normal target pump flow and MAP, or usual care, during CPB. In the observational cohort, MAP during hypothermic CPB averaged 68.8 ± 8.0 mmHg (mean ± SD) in the 36 patients who developed AKI and 68.9 ± 6.3 mmHg in the 57 patients who did not (p = 0.98). Pump flow averaged 2.4 ± 0.2 L/min/m2 in both groups. In the feasibility clinical trial, compared with usual care, those randomized to increased target pump flow and MAP had greater mean pump flow (2.70 ± 0.23 vs. 2.42 ± 0.09 L/min/m2 during the period before rewarming) and systemic oxygen delivery (363 ± 60 vs. 281 ± 45 mL/min/m2 ). Target MAP ≥80 mmHg was achieved in 66.6% of patients in the intervention group but in only 27.3% of patients in the usual care group. Nevertheless, MAP during CPB did not differ significantly between the two groups. We conclude that little insight was gained from our observational study regarding the impact of variations in pump flow and MAP on the risk of AKI. However, a clinical trial to assess the effects of greater target pump flow and MAP on the risk of AKI appears feasible.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Humanos , Estudos de Viabilidade , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Hemodinâmica , Injúria Renal Aguda/etiologia , Complicações Pós-Operatórias
3.
J Cardiothorac Vasc Anesth ; 37(2): 237-245, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435720

RESUMO

OBJECTIVES: To determine if the administration of norepinephrine to patients recovering from on-pump cardiac surgery is associated with changes in urinary oxygen tension (PO2), an indirect index of renal medullary oxygenation. DESIGN: Single center, prospective observational study. SETTING: Surgical intensive care unit (ICU). PARTICIPANTS: A nonconsecutive sample of 93 patients recovering from on-pump cardiac surgery. MEASUREMENTS AND MAIN RESULTS: In the ICU, norepinephrine was the most commonly used vasopressor agent (90% of patients, 84/93), with fewer patients receiving epinephrine (48%, 45/93) or vasopressin (4%, 4/93). During the 30-to-60-minute period after increasing the infused dose of norepinephrine (n = 89 instances), urinary PO2 decreased by (least squares mean ± SEM) 1.8 ± 0.5 mmHg from its baseline level of 25.1 ± 1.1 mmHg. Conversely, during the 30-to-60-minute period after the dose of norepinephrine was decreased (n = 134 instances), urinary PO2 increased by 2.6 ± 0.5 mmHg from its baseline level of 22.7 ± 1.2 mmHg. No significant change in urinary PO2 was detected when the dose of epinephrine was decreased (n = 21). There were insufficient observations to assess the effects of increasing the dose of epinephrine (n = 11) or of changing the dose of vasopressin (n <4). CONCLUSIONS: In patients recovering from on-pump cardiac surgery, changes in norepinephrine dose are associated with reciprocal changes in urinary PO2, potentially reflecting an effect of norepinephrine on renal medullary oxygenation.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Norepinefrina , Humanos , Norepinefrina/farmacologia , Epinefrina , Vasopressinas , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Oxigênio
4.
Clin Exp Pharmacol Physiol ; 49(2): 228-241, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34674291

RESUMO

Acute kidney injury (AKI) is a common and serious post-operative complication of cardiac surgery. The value of a predictive biomarker is determined not only by its predictive efficacy, but also by how early this prediction can be made. For a biomarker of cardiac surgery-associated AKI, this is ideally during the intra-operative period. Therefore, in 82 adult patients undergoing cardiac surgery requiring cardiopulmonary bypass (CPB), we prospectively compared the predictive efficacy of various blood and urinary biomarkers with that of continuous measurement of urinary oxygen tension (UPO2 ) at pre-determined intra- and post-operative time-points. None of the blood or urine biomarkers we studied showed predictive efficacy for post-operative AKI when measured intra-operatively. When treated as a binary variable (≤ or > median for the whole cohort), the earliest excess risk of AKI was predicted by an increase in urinary neutrophil gelatinase-associated lipocalin (NGAL) at 3 h after entry into the intensive care unit (odds ratio [95% confidence limits], 2.86 [1.14-7.21], p = 0.03). Corresponding time-points were 6 h for serum creatinine (3.59 [1.40-9.20], p = 0.008), and 24 h for plasma NGAL (4.54 [1.73-11.90], p = 0.002) and serum cystatin C (6.38 [2.35-17.27], p = 0.001). In contrast, indices of intra-operative urinary hypoxia predicted AKI after weaning from CPB, and in the case of a fall in UPO2 to ≤10 mmHg, during the rewarming phase of CPB (3.00 [1.19-7.56], p = 0.02). We conclude that continuous measurement of UPO2 predicts AKI earlier than plasma or urinary NGAL, serum cystatin C, or early post-operative changes in serum creatinine.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Proteínas de Fase Aguda , Adulto , Biomarcadores , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Creatinina , Humanos , Lipocalinas , Oxigênio , Valor Preditivo dos Testes , Proteínas Proto-Oncogênicas
5.
Perfusion ; 37(6): 624-632, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33977810

RESUMO

INTRODUCTION: The renal medulla is susceptible to hypoxia during cardiopulmonary bypass (CPB), which may contribute to the development of acute kidney injury. But the speed of onset of renal medullary hypoxia remains unknown. METHODS: We continuously measured renal medullary oxygen tension (MPO2) in 24 sheep, and urinary PO2 (UPO2) as an index of MPO2 in 92 patients, before and after induction of CPB. RESULTS: In laterally recumbent sheep with a right thoracotomy (n = 20), even before CPB commenced MPO2 fell from (mean ± SEM) 52 ± 4 to 41 ±5 mmHg simultaneously with reduced arterial pressure (from 108 ± 5 to 88 ± 5 mmHg). In dorsally recumbent sheep with a medial sternotomy (n = 4), MPO2 was even more severely reduced (to 12 ± 12 mmHg) before CPB. In laterally recumbent sheep in which a crystalloid prime was used (n = 7), after commencing CPB, MPO2 fell abruptly to 24 ±6 mmHg within 20-30 minutes. MPO2 during CPB was not improved by adding donor blood to the prime (n = 13). In patients undergoing cardiac surgery, UPO2 fell by 4 ± 1 mmHg and mean arterial pressure fell by 7 ± 1 mmHg during the 30 minutes before CPB. UPO2 then fell by a further 12 ± 2 mmHg during the first 30 minutes of CPB but remained relatively stable for the remaining 24 minutes of observation. CONCLUSIONS: Renal medullary hypoxia is an early event during CPB. It starts to develop even before CPB, presumably due to a pressure-dependent decrease in renal blood flow. Medullary hypoxia during CPB appears to be promoted by hypotension and is not ameliorated by increasing blood hemoglobin concentration.


Assuntos
Injúria Renal Aguda , Ponte Cardiopulmonar , Animais , Humanos , Hipóxia , Medula Renal/irrigação sanguínea , Oxigênio , Ovinos
6.
J Biol Chem ; 295(18): 6023-6042, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32205446

RESUMO

Coenzyme Q (Q n ) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1-coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6 The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because "fused" proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.


Assuntos
Deleção de Genes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Ubiquinona/análogos & derivados , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Mitocôndrias/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Ubiquinona/biossíntese , Ubiquinona/deficiência , Ubiquinona/genética , Ubiquinona/metabolismo
7.
Clin Sci (Lond) ; 135(2): 327-346, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33480422

RESUMO

A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of ß-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin-angiotensin-aldosterone system (RAAS) overactivation.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Endotélio Vascular/efeitos dos fármacos , Resistência à Insulina , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Angiografia Coronária , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Metoprolol/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Cloreto de Sódio na Dieta/administração & dosagem
8.
J Card Surg ; 36(10): 3577-3585, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34327740

RESUMO

BACKGROUND: Acute kidney injury (AKI) is common after cardiac surgery requiring cardiopulmonary bypass. Renal hypoxia may precede clinically detectable AKI. We compared the efficacy of two indices of renal hypoxia, (i) intraoperative urinary oxygen tension (UPO2 ) and (ii) the change in plasma erythropoietin (pEPO) during surgery, in predicting AKI. We also investigated whether the performance of these prognostic markers varies with preoperative patient characteristics. METHODS: In 82 patients undergoing on-pump cardiac surgery, blood samples were taken upon induction of anesthesia and upon entry into the intensive care unit. UPO2 was continuously measured throughout surgery. RESULTS: Thirty-two (39%) patients developed postoperative AKI. pEPO increased during surgery, but this increase did not predict AKI, regardless of risk of postoperative mortality assessed by EuroSCORE-II. For patients categorized at higher risk by EuroSCORE-II >1.98 (median score for the cohort), UPO2 ≤10 mmHg at any time during surgery predicted a 4.04-fold excess risk of AKI (p = .04). However, UPO2 did not significantly predict AKI in lower-risk patients. UPO2 significantly predicted AKI in patients who were older, had previous myocardial infarction, diabetes, lower preoperative serum creatinine, or shorter bypass times. pEPO and UPO2 were only weakly correlated. CONCLUSIONS: Intraoperative change in pEPO does not predict AKI. However, UPO2 shows promise, particularly in patients with higher risk of operative mortality. The disparity between these two markers of renal hypoxia may indicate that UPO2 reflects medullary oxygenation whereas pEPO reflects cortical oxygenation.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Humanos , Hipóxia/etiologia , Complicações Pós-Operatórias , Fatores de Risco
9.
Proc Natl Acad Sci U S A ; 114(33): 8770-8775, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760994

RESUMO

Fibrils and oligomers are the aggregated protein agents of neuronal dysfunction in ALS diseases. Whereas we now know much about fibril architecture, atomic structures of disease-related oligomers have eluded determination. Here, we determine the corkscrew-like structure of a cytotoxic segment of superoxide dismutase 1 (SOD1) in its oligomeric state. Mutations that prevent formation of this structure eliminate cytotoxicity of the segment in isolation as well as cytotoxicity of the ALS-linked mutants of SOD1 in primary motor neurons and in a Danio rerio (zebrafish) model of ALS. Cytotoxicity assays suggest that toxicity is a property of soluble oligomers, and not large insoluble aggregates. Our work adds to evidence that the toxic oligomeric entities in protein aggregation diseases contain antiparallel, out-of-register ß-sheet structures and identifies a target for structure-based therapeutics in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Cristalografia por Raios X/métodos , Camundongos , Neurônios Motores/metabolismo , Mutação/genética , Conformação Proteica em Folha beta , Superóxido Dismutase-1/genética
10.
Am J Physiol Renal Physiol ; 317(2): F322-F332, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31188031

RESUMO

Pimonidazole adduct immunohistochemistry is one of the few available methods for assessing renal tissue hypoxia at the cellular level. It appears to be prone to artifactual false positive staining under some circumstances. Here, we assessed the nature of this false positive staining and, having determined how to avoid it, reexamined the nature of cellular hypoxia in rat models of kidney disease. When a mouse-derived anti-pimonidazole primary antibody was used, two types of staining were observed. First, there was diffuse staining of the cytoplasm of tubular epithelial cells, which was largely absent when the primary antibody was omitted from the incubation protocol or in tissues known not to contain pimonidazole adducts. Second, there was staining of the apical membranes of tubular epithelial cells, debris within the lumen of renal tubules, including tubular casts, and the interstitium; this latter staining was present even when the primary antibody was omitted from the incubation protocol. Such false positive staining was particularly prominent in acutely injured kidneys. It could not be avoided by preincubation of sections with a mouse IgG blocking reagent. Furthermore, preadsorption of the secondary antibody against rat Ig abolished all staining; however, when a rabbit-derived polyclonal anti-pimonidazole primary antibody was used, the false positive staining was largely avoided. Using this method, we confirmed the presence of hypoxia, localized mainly to the tubular epithelium, in the acute phase of severe renal ischemia-reperfusion injury, adenine-induced chronic kidney disease, and polycystic kidney disease. We conclude that this new method provides improved detection of renal cellular hypoxia.


Assuntos
Injúria Renal Aguda/patologia , Anticorpos Monoclonais/imunologia , Imuno-Histoquímica/métodos , Rim/patologia , Nitroimidazóis/imunologia , Doenças Renais Policísticas/patologia , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Animais , Especificidade de Anticorpos , Artefatos , Hipóxia Celular , Modelos Animais de Doenças , Reações Falso-Positivas , Rim/imunologia , Rim/metabolismo , Doenças Renais Policísticas/imunologia , Doenças Renais Policísticas/metabolismo , Valor Preditivo dos Testes , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Reprodutibilidade dos Testes
11.
J Magn Reson Imaging ; 50(2): 365-376, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30635955

RESUMO

One of the more common and important challenges in the imaging of children is minimizing image degradation caused by motion. This is especially important in MRI, which is often preferable in the pediatric population due to better tissue characterization and lack of ionizing radiation. However, due to the length of time needed for most examinations, MRI is among the most sensitive to disruption by patient motion. Traditionally, deep conscious sedation or general anesthesia was the most common method of reducing motion in children who are unable or unwilling to follow direction. As the drawbacks and risks of anesthesia in children become more known and accepted, the development and optimization of means of mitigating motion and anxiety in children without the use of sedation or anesthesia becomes more urgent. In this article we describe the risks of sedation in the pediatric population and explore current methods of reducing both patient anxiety and imaging degradation from motion in the unsedated, free-breathing child. Level of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019;50:365-376.


Assuntos
Artefatos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/psicologia , Ansiedade/prevenção & controle , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Movimento (Física) , Respiração
12.
Am J Physiol Renal Physiol ; 314(5): F715-F725, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931522

RESUMO

Vascular topology and morphology are critical in the regulation of blood flow and the transport of small solutes, including oxygen, carbon dioxide, nitric oxide, and hydrogen sulfide. Renal vascular morphology is particularly challenging, since many arterial walls are partially wrapped by the walls of veins. In the absence of a precise characterization of three-dimensional branching vascular geometry, accurate computational modeling of the intrarenal transport of small diffusible molecules is impossible. An enormous manual effort was required to achieve a relatively precise characterization of rat renal vascular geometry, highlighting the need for an automated method for analysis of branched vasculature morphology to allow characterization of the renal vascular geometry of other species, including humans. We present a semisupervised method for three-dimensional morphometric analysis of renal vasculature images generated by computed tomography. We derive quantitative vascular attributes important to mass transport between arteries, veins, and the renal tissue and present methods for their computation for a three-dimensional vascular geometry. To validate the algorithm, we compare automated vascular estimates with subjective manual measurements for a portion of rabbit kidney. Although increased image resolution can improve outcomes, our results demonstrate that the method can quantify the morphological characteristics of artery-vein pairs, comparing favorably with manual measurements. Similar to the rat, we show that rabbit artery-vein pairs become less intimate along the course of the renal vasculature, but the total wrapped mass transfer coefficient increases and then decreases. This new method will facilitate new quantitative physiological models describing the transport of small molecules within the kidney.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Imageamento Tridimensional/métodos , Rim/irrigação sanguínea , Flebografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Artéria Renal/diagnóstico por imagem , Veias Renais/diagnóstico por imagem , Animais , Valor Preditivo dos Testes , Coelhos , Ratos , Reprodutibilidade dos Testes , Aprendizado de Máquina Supervisionado
13.
Am J Physiol Renal Physiol ; 315(5): F1358-F1369, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30110566

RESUMO

Tissue hypoxia has been proposed as an important event in renal ischemia-reperfusion injury (IRI), particularly during the period of ischemia and in the immediate hours following reperfusion. However, little is known about renal oxygenation during the subacute phase of IRI. We employed four different methods to assess the temporal and spatial changes in tissue oxygenation during the subacute phase (24 h and 5 days after reperfusion) of a severe form of renal IRI in rats. We hypothesized that the kidney is hypoxic 24 h and 5 days after an hour of bilateral renal ischemia, driven by a disturbed balance between renal oxygen delivery (Do2) and oxygen consumption (V̇o2). Renal Do2 was not significantly reduced in the subacute phase of IRI. In contrast, renal V̇o2 was 55% less 24 h after reperfusion and 49% less 5 days after reperfusion than after sham ischemia. Inner medullary tissue Po2, measured by radiotelemetry, was 25 ± 12% (mean ± SE) greater 24 h after ischemia than after sham ischemia. By 5 days after reperfusion, tissue Po2 was similar to that in rats subjected to sham ischemia. Tissue Po2 measured by Clark electrode was consistently greater 24 h, but not 5 days, after ischemia than after sham ischemia. Cellular hypoxia, assessed by pimonidazole adduct immunohistochemistry, was largely absent at both time points, and tissue levels of hypoxia-inducible factors were downregulated following renal ischemia. Thus, in this model of severe IRI, tissue hypoxia does not appear to be an obligatory event during the subacute phase, likely because of the markedly reduced oxygen consumption.


Assuntos
Injúria Renal Aguda/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Modelos Animais de Doenças , Hemodinâmica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/patologia , Masculino , Oxigênio/sangue , Ratos Sprague-Dawley , Circulação Renal , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Índice de Gravidade de Doença , Transdução de Sinais , Fatores de Tempo
14.
Nephrol Dial Transplant ; 33(12): 2191-2201, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547923

RESUMO

Background: Acute kidney injury (AKI) is common after cardiac surgery and profoundly affects postoperative mortality and morbidity. There are no validated methods to assess risk of AKI intraoperatively. Methods: We determined the association between postoperative AKI and intraoperative urinary oxygen tension (PO2), measured via a fiber optic probe in the tip of the urinary catheter, in 65 patients undergoing high-risk cardiac surgery requiring cardiopulmonary bypass (CPB). AKI was diagnosed by modified Kidney Disease: Improving Global Outcomes criteria. Results: Urinary PO2 fell during the operation, often reaching its nadir during rewarming or after weaning from CPB. Nadir urinary PO2 was lower in the 26 patients who developed AKI (mean ± SD, 8.9 ± 5.6 mmHg) than in the 39 patients who did not (14.9 ± 10.2 mmHg, P = 0.008). Patients who developed AKI had longer periods of urinary PO2 ≤15 and 10 mmHg than patients who did not. Odds of AKI increased when urinary PO2 fell to ≤10 mmHg {3.60 [95% confidence interval (CI) 1.27-10.21]} or ≤5 mmHg [3.60 (95% CI 1.04-12.42), P = 0.04] during the operation. When urinary PO2 fell to ≤15 mmHg, for more than or equal to the median duration for all patients (4.8 min/h surgery), the odds of AKI were 4.85 (95% CI 1.64-14.40), P = 0.004. The area under the receiver-operator curve for this parameter alone was 0.69, and was 0.89 when other variables with P ≤ 0.10 in univariable analysis were included in the model. Conclusion: Low urinary PO2 during adult cardiac surgery requiring CPB predicts AKI, so may identify patients in which intervention to improve renal oxygenation might reduce the risk of AKI.


Assuntos
Injúria Renal Aguda/etiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Creatinina/sangue , Hipóxia/complicações , Rim/irrigação sanguínea , Oxigênio/metabolismo , Complicações Pós-Operatórias/etiologia , Injúria Renal Aguda/sangue , Injúria Renal Aguda/diagnóstico , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Hipóxia/sangue , Hipóxia/diagnóstico , Período Intraoperatório , Masculino , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/metabolismo
16.
Am J Physiol Renal Physiol ; 313(2): F237-F253, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381464

RESUMO

To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as "Strahler" orders) of the preglomerular renal vasculature in the rat, with an analysis of an extensive data set obtained using light microscopy to estimate oxygen mass transfer coefficients for each Strahler order. Furthermore, the AV shunting model is now set within a global oxygen transport model that includes transport from arteries, glomeruli, peritubular capillaries, and veins to tissue. While a number of lines of evidence suggest AV shunting is significant, most importantly, our AV oxygen shunting model predicts AV shunting is small under normal physiological conditions (~0.9% of total renal oxygen delivery; range 0.4-1.4%), but increases during renal ischemia, glomerular hyperfiltration (~2.1% of total renal oxygen delivery; range 0.84-3.36%), and some cardiovascular disease states (~3.0% of total renal oxygen delivery; range 1.2-4.8%). Under normal physiological conditions, blood Po2 is predicted to fall by ~16 mmHg from the root of the renal artery to glomerular entry, with AV oxygen shunting contributing ~40% and oxygen diffusion from arteries to tissue contributing ~60% of this decline. Arterial Po2 is predicted to fall most rapidly from Strahler order 4, under normal physiological conditions. We conclude that AV oxygen shunting normally has only a small impact on renal oxygenation, but may exacerbate renal hypoxia during renal ischemia, hyperfiltration, and some cardiovascular disease states.


Assuntos
Simulação por Computador , Rim/irrigação sanguínea , Rim/metabolismo , Modelos Cardiovasculares , Consumo de Oxigênio , Oxigênio/sangue , Artéria Renal/fisiologia , Circulação Renal , Veias Renais/fisiologia , Animais , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/fisiopatologia , Hipóxia Celular , Difusão , Taxa de Filtração Glomerular , Isquemia/sangue , Isquemia/fisiopatologia , Ratos , Artéria Renal/diagnóstico por imagem , Veias Renais/diagnóstico por imagem , Reprodutibilidade dos Testes , Microtomografia por Raio-X
17.
Am J Physiol Renal Physiol ; 313(2): F218-F236, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404592

RESUMO

We develop a pseudo-three-dimensional model of oxygen transport for the renal cortex of the rat, incorporating both the axial and radial geometry of the preglomerular circulation and quantitative information regarding the surface areas and transport from the vasculature and renal corpuscles. The computational model was validated by simulating four sets of published experimental studies of renal oxygenation in rats. Under the control conditions, the predicted cortical tissue oxygen tension ([Formula: see text]) or microvascular oxygen tension (µPo2) were within ±1 SE of the mean value observed experimentally. The predicted [Formula: see text] or µPo2 in response to ischemia-reperfusion injury, acute hemodilution, blockade of nitric oxide synthase, or uncoupling mitochondrial respiration, were within ±2 SE observed experimentally. We performed a sensitivity analysis of the key model parameters to assess their individual or combined impact on the predicted [Formula: see text] and µPo2 The model parameters analyzed were as follows: 1) the major determinants of renal oxygen delivery ([Formula: see text]) (arterial blood Po2, hemoglobin concentration, and renal blood flow); 2) the major determinants of renal oxygen consumption (V̇o2) [glomerular filtration rate (GFR) and the efficiency of oxygen utilization for sodium reabsorption (ß)]; and 3) peritubular capillary surface area (PCSA). Reductions in PCSA by 50% were found to profoundly increase the sensitivity of [Formula: see text] and µPo2 to the major the determinants of [Formula: see text] and V̇o2 The increasing likelihood of hypoxia with decreasing PCSA provides a potential explanation for the increased risk of acute kidney injury in some experimental animals and for patients with chronic kidney disease.


Assuntos
Injúria Renal Aguda/sangue , Simulação por Computador , Córtex Renal/irrigação sanguínea , Córtex Renal/metabolismo , Modelos Biológicos , Consumo de Oxigênio , Oxigênio/sangue , Insuficiência Renal Crônica/sangue , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Hipóxia Celular , Modelos Animais de Doenças , Hemodinâmica , Humanos , Córtex Renal/patologia , Masculino , Ratos Sprague-Dawley , Circulação Renal , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Reprodutibilidade dos Testes
18.
Clin Exp Pharmacol Physiol ; 44(12): 1241-1253, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28795785

RESUMO

We assessed the utility of synchrotron-radiation micro-computed tomography (micro-CT) for quantification of the radial geometry of the renal cortical vasculature. The kidneys of nine rats and six rabbits were perfusion fixed and the renal circulation filled with Microfil. In order to assess shrinkage of Microfil, rat kidneys were imaged at the Australian Synchrotron immediately upon tissue preparation and then post fixed in paraformaldehyde and reimaged 24 hours later. The Microfil shrank only 2-5% over the 24 hour period. All subsequent micro-CT imaging was completed within 24 hours of sample preparation. After micro-CT imaging, the kidneys were processed for histological analysis. In both rat and rabbit kidneys, vascular structures identified in histological sections could be identified in two-dimensional (2D) micro-CT images from the original kidney. Vascular morphology was similar in the two sets of images. Radial geometry quantified by manual analysis of 2D images from micro-CT was consistent with corresponding data generated by light microscopy. However, due to limited spatial resolution when imaging a whole organ using contrast-enhanced micro-CT, only arteries ≥100 and ≥60 µm in diameter, for the rat and rabbit respectively, could be assessed. We conclude that it is feasible and valid to use micro-CT to quantify vascular geometry of the renal cortical circulation in both the rat and rabbit. However, a combination of light microscopic and micro-CT approaches are required to evaluate the spatial relationships between intrarenal arteries and veins over an extensive range of vessel size.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Rim/diagnóstico por imagem , Microscopia/métodos , Artéria Renal/diagnóstico por imagem , Veias Renais/diagnóstico por imagem , Animais , Interpretação de Imagem Assistida por Computador , Técnicas In Vitro , Rim/irrigação sanguínea , Coelhos , Ratos , Especificidade da Espécie
19.
Am J Physiol Regul Integr Comp Physiol ; 311(5): R797-R810, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488891

RESUMO

Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases, and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries and veins in the cortex are also arranged in a countercurrent fashion, as are descending and ascending vasa recta in the medulla. For countercurrent diffusion to occur, barriers to diffusion must be small. This appears to be characteristic of larger vessels in the renal cortex. There must also be gradients in the concentration of molecules between afferent and efferent vessels, with the transport of molecules possible in either direction. Such gradients exist for oxygen in both the cortex and medulla, but there is little evidence that large gradients exist for other molecules such as carbon dioxide, nitric oxide, superoxide, hydrogen sulfide, and ammonia. There is some experimental evidence for arterial-to-venous (AV) oxygen shunting. Mathematical models also provide evidence for oxygen shunting in both the cortex and medulla. However, the quantitative significance of AV oxygen shunting remains a matter of controversy. Thus, whereas the countercurrent arrangement of vasa recta in the medulla appears to have evolved as a consequence of the evolution of Henle's loop, the evolutionary significance of the intimate countercurrent arrangement of blood vessels in the renal cortex remains an enigma.


Assuntos
Evolução Biológica , Gases/sangue , Rim/irrigação sanguínea , Rim/fisiologia , Circulação Renal/genética , Ureia/sangue , Animais , Transporte Biológico Ativo/genética , Humanos , Artéria Renal , Veias Renais
20.
AJR Am J Roentgenol ; 206(4): 678-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27003048

RESUMO

OBJECTIVE: There is a chronic gender imbalance in academic radiology departments, which could limit our field's ability to foster creative, productive, and innovative environments. We recently reviewed 51 major academic radiology faculty rosters and discovered that 34% of academic radiologists are women, but only 25% of vice chairs and section chiefs and 9% of department chairs are women. CONCLUSION: Active intervention is needed to correct this imbalance, which should start with awareness of the issue, exposing medical students to radiology early in their training, and implementing better mentorship programs for female radiologists.


Assuntos
Docentes de Medicina/provisão & distribuição , Médicas/provisão & distribuição , Radiologia , Centros Médicos Acadêmicos , Mobilidade Ocupacional , Feminino , Humanos , Liderança , Masculino , Mentores , Fatores Sexuais , Estados Unidos , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA