Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 90(3): e0055021, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35041487

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, a severe human infection that is difficult to treat with antibiotics and for which there is no effective vaccine. Development of novel treatments rely upon appropriately characterized animal models. The common marmoset (Callithrix jacchus) has been established at Defense Science and Technology laboratories (DSTL) as a model of melioidosis. Further analysis was performed on samples generated in these studies to provide a description of the innate immune response. Many of the immunological features described, (migration/activation of neutrophils and macrophages, activation of T cells, elevation of key cytokines IFNγ, TNF-α, IL-6, and IL-1ß) have been observed in acute melioidosis human cases and correlated with prognosis. Expression of the MHCII marker (HLA-DR) on neutrophils showed potential as a diagnostic with 80% accuracy when comparing pre- and postchallenge levels in paired blood samples. Discriminant analysis of cell surface, activation markers on neutrophils combined with levels of key cytokines, differentiated between disease states from single blood samples with 78% accuracy. These key markers have utility as a prototype postexposure, presymptomatic diagnostic. Ultimately, these data further validate the use of the marmoset as a suitable model for determining efficacy of medical countermeasures against B. pseudomallei.


Assuntos
Burkholderia pseudomallei , Melioidose , Doença Aguda , Animais , Callithrix , Citocinas , Imunidade Inata
2.
Antimicrob Agents Chemother ; 66(11): e0070822, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36226972

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis and presents with diverse clinical manifestations. Naturally occurring infection occurs following contamination of cuts or skin abrasions, or ingestion of contaminated water, and occasionally through inhalational of infected soil or water particles. The influence of the route of disease acquisition on the efficacy of medical countermeasures has not been explored in humans or in appropriate animal models. The efficacy of co-trimoxazole against melioidosis acquired by different routes of exposure was assessed in postexposure prophylaxis (PEP) and treatment studies in marmoset models of melioidosis. Following challenge with B. pseudomallei by the inhalational, subcutaneous, or ingestion routes of administration, animals were given co-trimoxazole at 12 hourly intervals for 14 days, starting either 6 h postchallenge or at the onset of fever. Animals were then observed for 28 days. All animals that received antibiotic 6 h postchallenge survived the duration of dosing. All animals that received antibiotics at the onset of fever completed the treatment, but 10%, 57%, and 60% of those with ingestion, subcutaneous, and inhalation challenge relapsed, respectively. Bacteriological and histological differences were observed between placebo-control animals and those that relapsed. Immunological profiles indicate difference between animals given placebo and those that relapsed or survived the duration of the study. A broad T-cell activation was observed in animals that survived. Overall, these data suggest the efficacy of co-trimoxazole, as measured in the incidence of relapse, differs depending on the disease-acquisition route. Therefore, there are implications in treating this disease in regions of endemicity.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Animais , Melioidose/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Antibacterianos/uso terapêutico , Água , Modelos Animais de Doenças
3.
J Infect Dis ; 214(suppl 3): S268-S274, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27471321

RESUMO

Ebola virus Makona (EBOV-Makona; from the 2013-2016 West Africa outbreak) shows decreased virulence in an immune-deficient mouse model, compared with a strain from 1976. Unlike other filoviruses tested, EBOV-Makona may be slightly more virulent by the aerosol route than by the injected route, as 2 mice died following aerosol exposure, compared with no mortality among mice that received intraperitoneal injection of equivalent or higher doses. Although most mice did not succumb to infection, the detection of an immunoglobulin G antibody response along with observed clinical signs suggest that the mice were infected but able to clear the infection and recover. We hypothesize that this may be due to the growth rates and kinetics of the virus, which appear slower than that for other filoviruses and consequently give more time for an immune response that results in clearance of the virus. In this instance, the immune-deficient mouse model is unlikely to be appropriate for testing medical countermeasures against this EBOV-Makona stock but may provide insight into pathogenesis and the immune response to virus.


Assuntos
Anticorpos Antivirais/sangue , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Imunoglobulina G/sangue , Aerossóis , Animais , Modelos Animais de Doenças , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/imunologia , Doença pelo Vírus Ebola/patologia , Humanos , Camundongos
4.
J Clin Microbiol ; 53(10): 3148-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26179307

RESUMO

Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples.


Assuntos
Soluções Tampão , Desinfetantes/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Etanol , Viabilidade Microbiana/efeitos dos fármacos , Inativação de Vírus/efeitos dos fármacos , Animais , Sangue/virologia , Callithrix , Camundongos
5.
Int J Exp Pathol ; 96(6): 414-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26852689

RESUMO

The marmoset model of melioidosis was used to explore whether there was any difference in the disease presentation and/or the lesion formation following inhalational challenge with one of four strains of Burkholderia pseudomallei (K96243, 1026b, HBPUB10303a and HBPUB10134a). Marmosets were challenged with a range of bacterial doses and bacterial load, histological and physiological features were determined temporally following lethal disease. Melioidosis presented as an acute, febrile disease with bacteraemia, bacterial dissemination, necrotizing hepatitis, splenitis and pneumonia which was independent of the challenge strain. Generally, there were no major differences in the manifestation of melioidosis following challenge by the different strains of B. pseudomallei; however, there were some differences in the time to death and the severity of the pathological features. The pathological features observed in the liver and spleen of animals challenged with B. pseudomallei strain 1026b were statistically less severe (P < 0.05) and less frequent. However, more severe foci of disease were evident in the lungs of animals challenged with strain 1026b. In all cases, the lesions developed from small areas of bacteria-infected macrophages surrounded by non-infected neutrophils into large lesions with both immune cell types infected. The marmoset model was a useful tool enabling the distinction of subtle difference in the pathological response to B. pseudomallei.


Assuntos
Burkholderia pseudomallei/patogenicidade , Exposição por Inalação , Fígado/patologia , Pulmão/patologia , Melioidose/patologia , Baço/patologia , Aerossóis , Animais , Carga Bacteriana , Burkholderia pseudomallei/classificação , Callithrix , Modelos Animais de Doenças , Progressão da Doença , Feminino , Interações Hospedeiro-Patógeno , Fígado/microbiologia , Pulmão/microbiologia , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Melioidose/microbiologia , Neutrófilos/patologia , Índice de Gravidade de Doença , Baço/microbiologia , Fatores de Tempo
6.
Int J Exp Pathol ; 95(6): 378-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25477002

RESUMO

Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Mormo/microbiologia , Mormo/patologia , Melioidose/microbiologia , Melioidose/patologia , Animais , Antígenos de Bactérias , Carga Bacteriana , Callithrix , Modelos Animais de Doenças , Feminino , Mormo/mortalidade , Injeções Subcutâneas , Masculino , Melioidose/mortalidade , Índice de Gravidade de Doença
7.
Infect Immun ; 79(4): 1512-25, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21300775

RESUMO

The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD(50)s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD(50) for the Δhcp1 mutant was >10(3) bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.


Assuntos
Perfilação da Expressão Gênica , Melioidose/microbiologia , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Cricetinae , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Feminino , Imunofluorescência , Expressão Gênica , Genes Bacterianos , Humanos , Immunoblotting , Fígado/microbiologia , Fígado/patologia , Macrófagos/microbiologia , Macrófagos/patologia , Melioidose/genética , Melioidose/metabolismo , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Virulência/genética , Fatores de Virulência/genética
8.
PLoS Negl Trop Dis ; 15(2): e0009016, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617546

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, which is a Gram negative, facultative intracellular bacterium. Disease is prevalent in SE Asia and in northern Australia, as well as in other tropical and subtropical regions. Recently, there is an increasing awareness of the importance of bacterial ingestion as a potential route of infection, particularly in cases of unexplained origin of the disease. The marmoset is a New World Monkey (NWM) species that is being developed as an alternative NHP model to complement the more traditionally used Old World Monkeys (OWM). Models have been developed for the traditional routes of disease acquisition, subcutaneous and inhalational. This manuscript details the development and characterisation of an ingestion model of melioidosis. Dose-ranging study assessed the lethality of B. pseudomallei and disease progression was assessed by euthanizing animals at predetermined time points, 12, 36, 48 and 54 hours post-challenge. Challenge doses of greater than 6.2 x 106 cfu resulted in an acute, lethal, febrile disease. Following challenge the lung was the first organ, outside of the gastrointestinal tract, to become colonised. Enteritis (duodenitis, ileitis and/or jejunitis) was observed in sections of the small intestine from animals that succumbed to disease. However, the most severe pathological features were observed in the mesenteric lymph nodes from these animals. These findings are consistent with lymphatic draining as route of dissemination.


Assuntos
Burkholderia pseudomallei/fisiologia , Sistema Linfático/microbiologia , Melioidose/patologia , Animais , Burkholderia pseudomallei/patogenicidade , Callithrix , Modelos Animais de Doenças , Enterite/microbiologia , Feminino , Pulmão/microbiologia , Linfonodos/microbiologia , Linfonodos/patologia , Masculino , Melioidose/microbiologia
9.
Viruses ; 8(7)2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399759

RESUMO

The West Africa Ebola virus (EBOV) outbreak has highlighted the need for effective disinfectants capable of reducing viral load in a range of sample types, equipment and settings. Although chlorine-based products are widely used, they can also be damaging to equipment or apparatus that needs continuous use such as aircraft use for transportation of infected people. Two aircraft cleaning solutions were assessed alongside two common laboratory disinfectants in a contact kill assay with EBOV on two aircraft relevant materials representative of a porous and non-porous surface. A decimal log reduction of viral titre of 4 is required for a disinfectant to be deemed effective and two of the disinfectants fulfilled this criteria under the conditions tested. One product, Ardrox 6092, was found to perform similarly to sodium hypochlorite, but as it does not have the corrosive properties of sodium hypochlorite, it could be an alternative disinfectant solution to be used for decontamination of EBOV on sensitive apparatus.


Assuntos
Desinfetantes/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Inativação de Vírus , Viabilidade Microbiana/efeitos dos fármacos , Carga Viral
10.
PLoS One ; 10(12): e0145397, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26689559

RESUMO

The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis.


Assuntos
Burkholderia pseudomallei/patogenicidade , Interações Hospedeiro-Patógeno , Lipopolissacarídeos/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Burkholderia pseudomallei/metabolismo , Células HEK293/metabolismo , Células HEK293/microbiologia , Humanos , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/toxicidade , Melioidose/metabolismo , Melioidose/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pneumonia Bacteriana/induzido quimicamente , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Fatores de Virulência/metabolismo
11.
J Immunol Res ; 2014: 392170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892035

RESUMO

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is refractory to antibiotic treatment and there is currently no licensed vaccine. In this report we detail the construction and protective efficacy of a polysaccharide-protein conjugate composed of B. pseudomallei lipopolysaccharide and the Hc fragment of tetanus toxin. Immunisation of mice with the lipopolysaccharide-conjugate led to significantly reduced bacterial burdens in the spleen 48 hours after challenge and afforded significant protection against a lethal challenge with B. pseudomallei. The conjugate generated significantly higher levels of antigen-specific IgG1 and IgG2a than in lipopolysaccharide-immunised mice. Immunisation with the conjugate also demonstrated a bias towards Th1 type responses, evidenced by high levels of IgG2a. In contrast, immunisation with unconjugated lipopolysaccharide evoked almost no IgG2a demonstrating a bias towards Th2 type responses. This study demonstrates the effectiveness of this approach in the development of an efficacious and protective vaccine against melioidosis.


Assuntos
Anticorpos Antibacterianos/biossíntese , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Imunoconjugados/administração & dosagem , Lipopolissacarídeos/imunologia , Melioidose/prevenção & controle , Fragmentos de Peptídeos/imunologia , Toxina Tetânica/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Feminino , Imunidade Humoral/efeitos dos fármacos , Imunização , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoglobulina G/biossíntese , Lipopolissacarídeos/química , Melioidose/imunologia , Melioidose/microbiologia , Melioidose/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Toxina Tetânica/química , Equilíbrio Th1-Th2 , Vacinas Conjugadas
12.
Faraday Discuss ; 149: 23-36; discussion 63-77, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21413172

RESUMO

Rapid detection of the category B biothreat agents Burkholderia pseudomallei and Burkholderia mallei in acute infections is critical to ensure that appropriate treatment is administered quickly to reduce an otherwise high probability of mortality (ca. 40% for B. pseudomallei). We are developing assays that can be used in clinical laboratories or security applications for the direct detection of surface-localized and secreted macromolecules produced by these organisms. We present our current medium-throughout approach for target selection and production of Burkholderia macromolecules and describe the generation of a Fab molecule targeted to the B. mallei BimA protein. We also present development of prototype assays for detecting Burkholderia species using anti-lipopolysaccharide antibodies.


Assuntos
Burkholderia mallei/isolamento & purificação , Burkholderia pseudomallei/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Mormo/microbiologia , Melioidose/microbiologia , Animais , Burkholderia mallei/metabolismo , Burkholderia pseudomallei/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Mormo/diagnóstico , Humanos , Melioidose/diagnóstico , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo
13.
Science ; 334(6057): 821-4, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22076380

RESUMO

The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Burkholderia pseudomallei/química , Burkholderia pseudomallei/patogenicidade , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Citotoxinas/química , Citotoxinas/genética , Citotoxinas/metabolismo , Citotoxinas/toxicidade , Proteínas de Escherichia coli/química , Fator de Iniciação 4A em Eucariotos/metabolismo , Glutamina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Proteínas Mutantes/toxicidade , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
Vaccine ; 28(47): 7551-5, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20837078

RESUMO

Burkholderia thailandensis is a less virulent close relative of Burkholderia pseudomallei, a CDC category B biothreat agent. We have previously shown that lipopolysaccharide (LPS) extracted from B. pseudomallei can provide protection against a lethal challenge of B. pseudomallei in a mouse model of melioidosis. Sugar analysis on LPS from B. thailandensis strain E264 confirmed that this polysaccharide has a similar structure to LPS from B. pseudomallei. Mice were immunised with LPS from B. thailandensis or B. pseudomallei and challenged with a lethal dose of B. pseudomallei strain K96243. Similar protection levels were observed when either LPS was used as the immunogen. This data suggests that B. thailandensis LPS has the potential to be used as part of a subunit based vaccine against pathogenic B. pseudomallei.


Assuntos
Burkholderia pseudomallei/patogenicidade , Burkholderia/patogenicidade , Lipopolissacarídeos/imunologia , Melioidose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/isolamento & purificação , Vacinas Bacterianas/imunologia , Burkholderia/imunologia , Burkholderia pseudomallei/imunologia , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/isolamento & purificação , Melioidose/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA