Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 34(8): 1367-75, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16698892

RESUMO

The pharmacokinetics and metabolism of 1-(4-((4-phenyl-5-trifluoromethyl-2-thienyl)methoxy)benzyl)azetidine-3-carboxylic acid (MRL-A), a selective agonist for the sphingosine-1-phosphate 1 (S1P1) receptor, were investigated in rats and dogs. In both species, more than 50% of the dose was excreted in bile. Specific to the rat, and observed in bile, were a taurine conjugate of MRL-A and a glucuronide conjugate of an azetidine lactam metabolite. In dogs, a smaller portion of the dose (54% of administered dose) was excreted intact in bile, and the major metabolites detected were an azetidine N-oxide of MRL-A and an acylglucuronide of an N-dealkylation product. This latter metabolite was also observed in rat bile. Stereoselective formation of the N-oxide isomer was observed in dogs, whereas the rat produced comparable amounts of both isomers. The formation of a unique glutathione adduct was observed in rat bile, which was proposed to occur via N-dealkylation, followed by reduction of the putative aldehyde product to form the alcohol, and dehydration of the alcohol to generate a reactive quinone methide intermediate. Incubation of a synthetic standard of this alcohol in rat microsomes fortified with reduced glutathione or rat hepatocytes resulted in formation of this unique glutathione adduct.


Assuntos
Azetidinas/farmacocinética , Glutationa/metabolismo , Receptores de Lisoesfingolipídeo/agonistas , Tiofenos/farmacocinética , Administração Oral , Animais , Azetidinas/administração & dosagem , Azetidinas/urina , Bile/química , Biotransformação , Cães , Fezes/química , Injeções Intravenosas , Mucosa Intestinal/metabolismo , Masculino , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Tiofenos/administração & dosagem , Tiofenos/urina
2.
Chem Res Toxicol ; 18(4): 675-85, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15833027

RESUMO

Estrogens and selective estrogen receptor modulators (SERMs) are prescribed widely in the clinic to alleviate symptoms in postmenopausal women, and they are metabolized to reactive intermediates, which may elicit adverse effects. As part of our efforts to develop safer SERMs, in vitro covalent protein binding of (2S,3R)-(+)-3-(4-hydroxyphenyl)-2-[4-(2-piperidin-1-ylethoxy)phenyl]-2,3-dihydro-1,4-benzoxathiin-6-ol (I) was evaluated. Radioactivity from [3H]I became covalently bound to proteins in a fashion that was both time- and NADPH-dependent in human liver microsomes and reached a value of 1106 pmol equiv/mg protein following a 45 min incubation. At least three pathways are involved in the bioactivation of I, namely, oxidative cleavage of the dihydrobenzoxathiin moiety to give a hydroquinone/para-benzoquinone redox couple, hydroxylation at position 5 or 7 of the benzoxathiin moiety leading to an o-quinone intermediate, and metabolism of the piperidine ring to give an iminium ion. The latter reactive intermediate was identified as its bis-cyano adduct when human liver microsomal incubations were performed in the presence of sodium cyanide. Structural modification of I, including a replacement of the piperidine with a pyrrolidine group, led to (2S,3R)-(+)-3-(3-hydroxyphenyl)-2-[4-(2-pyrrolidin-1-ylethoxy)phenyl]-2,3-dihydro-1,4-benzoxathiin-6-ol (II), which did not form a reactive iminium ion. Following the incubation of II with human liver microsomes, covalent binding to proteins was reduced (461 pmol equiv/mg protein), the residual level of binding apparently due to the formation of a rearranged biphenyl quinone type metabolite. Studies with inhibitory antibodies and chemical inhibitors showed that P450 3A4 was the primary enzyme responsible for oxidative bioactivation of I and II in human liver microsomes. These studies thus demonstrated that gaining an understanding of bioactivation mechanisms may be exploited in terms of guiding structural modifications of drug candidates to minimize covalent protein binding and, hopefully, to lower the potential for drug-mediated adverse effects.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Microssomos Hepáticos/metabolismo , Oxati-Inas/farmacocinética , Moduladores Seletivos de Receptor Estrogênico/farmacocinética , Benzoquinonas/metabolismo , Biotransformação , Citocromo P-450 CYP3A , Hepatócitos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ligação Proteica
3.
Drug Metab Dispos ; 30(7): 778-87, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12065436

RESUMO

(R)-N-[4-[2-[[2-Hydroxy-2-(pyridin-3-yl)ethyl]amino]ethyl]phenyl]- 4-[4-(4-trifluoro-methylphenyl)thiazol-2-yl]benzenesulfonamide (1) is a potent and selective agonist of the human beta3-adrenergic receptor. We report herein the data from studies of the metabolism and excretion of 1 in rats. Five metabolites were identified in the bile of male Sprague-Dawley rats administered 3H-labeled 1 by either oral gavage (10 mg/kg) or intravenous injection (3 mg/kg). These included a pyridine N-oxide derivative (M2), a primary amine resulting from N-dealkylation and loss of the pyridinyl-2-hydroxyethyl group (M4), a carboxylic acid derived from N-dealkylation and loss of the pyridyl-2-hydroxyethyl amine (M5), and the corresponding taurine and isethionic acid conjugates (M1 and M3). Metabolites M1 and M3 also were identified in rats treated with M5 and were generated in incubations of M5 with rat liver subcellular fractions in the presence of ATP and coenzyme A with supplementary taurine or isethionic acid. These results suggest that M5 is the precursor of M1 and M3 and that the formation of these conjugated metabolites follows similar mechanisms of amino acid conjugation. On the other hand, M2, M4, and M5 were produced from 1 in an NADPH-dependent manner in incubations with liver microsomes from rats, dogs, monkeys, and humans. In human liver preparations, these routes of biotransformation were shown to be catalyzed by cytochrome P450 3A4. In a bidirectional transport assay, transport of 1 across a monolayer of cells expressing P-glycoprotein (Pgp) was observed to be similar to that of vinblastine, which is an established substrate of the transporter protein. This finding, together with the observation that the parent compound was excreted in the feces of bile duct-cannulated animals following intravenous dosing, suggests that 1 is subject to Pgp-mediated excretion from intestine of rats.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3 , Ácido Isetiônico/metabolismo , Sulfonamidas/metabolismo , Tiazóis/metabolismo , Animais , Linhagem Celular , Cães , Feminino , Humanos , Ácido Isetiônico/química , Macaca mulatta , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 3/metabolismo , Sulfonamidas/química , Suínos , Tiazóis/química , Benzenossulfonamidas
4.
Chem Res Toxicol ; 15(7): 907-14, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12119000

RESUMO

Raloxifene is a selective estrogen receptor modulator which is effective in the treatment of osteoporosis in postmenopausal women. We report herein that cytochrome P450 (P450)3A4 is inhibited by raloxifene in human liver microsomal incubations. The nature of the inhibition was irreversible and was NADPH- and preincubation time-dependent, with K(I) and k(inact) values estimated at 9.9 microM and 0.16 min(-1), respectively. The observed loss of P450 3A4 activity was attenuated partially by glutathione (GSH), implying the involvement of a reactive metabolite(s) in the inactivation process. Subsequently, GSH adducts of raloxifene were identified in incubations with human liver microsomes; substitution with GSH occurred at the 5- or 7-position of the benzothiophene moiety or at the 3'-position of the phenol ring, with the 7-glutathionyl derivative being most abundant based on LC/MS and NMR analyses. These adducts are postulated to derive from addition of GSH to raloxifene arene oxides followed by dehydration and aromatization. Alternatively, raloxifene may be oxidized to an extended quinone intermediate, which then is trapped by GSH conjugation. The bioactivation of raloxifene most likely is catalyzed by P450 3A4, since the formation of GSH adducts was almost abolished when liver microsomes were pretreated with ketoconazole or with an inhibitory anti-P450 3A4 IgG. The GSH adducts also were detected in incubations of raloxifene with rat or human hepatocytes, while the corresponding N-acetylcysteine adducts were identified in the bile and urine from rats treated orally with the drug at 5 mg/kg. Taken together, these data indicate that P450 3A4-mediated bioactivation of raloxifene in vitro is accompanied by loss of enzyme activity. The significance of these findings with respect to the clinical use of raloxifene remains to be determined.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/metabolismo , Cloridrato de Raloxifeno/metabolismo , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Compostos de Sulfidrila/química , Acetilcisteína/química , Animais , Citocromo P-450 CYP3A , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Glutationa/química , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Oxirredução , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacologia , Ratos , Ratos Sprague-Dawley , Moduladores Seletivos de Receptor Estrogênico/química , Moduladores Seletivos de Receptor Estrogênico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA