Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Orthop ; 9(1): 6, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989917

RESUMO

PURPOSE: To develop a method for using an intact posterior cruciate ligament (PCL) as a predictor of anterior cruciate ligament (ACL) graft size and examine possible differences in tunnel length based on all-epiphyseal drilling method. METHODS: One hundred one patients 5-18 years of age with magnetic resonance imaging (MRI) of the knee at an outpatient pediatric orthopaedic clinic from 2008 to 2020 were included. ACL and PCL coronal, sagittal, and length measurements were made in all patients. Tunnel length measurements were made in patients with open physes. Statistical analyses were performed to evaluate potential associations in patient bony or ligamentous measurements. RESULTS: PCL sagittal width and PCL coronal width were statistically significant predictors of ACL sagittal width and ACL coronal width, respectively (p = 0.002, R = 0.304; p = 0.008, R = 0.264). The following equations were developed to calculate ACL coronal and sagittal width measurements from the corresponding measurement on an intact PCL; ACL Coronal Width (mm) = 6.23 + (0.16 x PCL Coronal Width); ACL Sagittal Width (mm) = 5.85 + (0.53 x PCL Sagittal Width). Mean tibial maximum oblique length (27.8 mm) was longer than mean tibial physeal sparing length (24.9 mm). Mean femoral maximum oblique length (36.9 mm) was comparable to mean femoral physeal sparing length (36.1 mm). Both were longer than mean femoral straight lateral length (32.7 mm). CONCLUSION: An intact PCL is a predictor of native ACL size. Tunnel length differs based on chosen drilling method in all-epiphyseal technique. LEVEL OF EVIDENCE: Diagnostic Level III.

2.
Funct Imaging Model Heart ; 10263: 95-105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29756127

RESUMO

Hypoplastic left heart syndrome (HLHS) is a single-ventricle congenital heart disease that is fatal if left unpalliated. In HLHS patients, the tricuspid valve is the only functioning atrioventricular valve, and its competence is therefore critical. This work demonstrates the first automated strategy for segmentation, modeling, and morphometry of the tricuspid valve in transthoracic 3D echocardiographic (3DE) images of pediatric patients with HLHS. After initial landmark placement, the automated segmentation step uses multi-atlas label fusion and the modeling approach uses deformable modeling with medial axis representation to produce patient-specific models of the tricuspid valve that can be comprehensively and quantitatively assessed. In a group of 16 pediatric patients, valve segmentation and modeling attains an accuracy (mean boundary displacement) of 0.8 ± 0.2 mm relative to manual tracing and shows consistency in annular and leaflet measurements. In the future, such image-based tools have the potential to improve understanding and evaluation of tricuspid valve morphology in HLHS and guide strategies for patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA