Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Subcell Biochem ; 83: 323-347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28271482

RESUMO

Ubiquitination is a highly conserved post-translational modification in eukaryotes, well known for targeting proteins for degradation by the 26S proteasome. Proteins destined for proteasomal degradation are selected by E3 ubiquitin ligases. Cullin-RING E3 ubiquitin ligases (CRLs) are the largest superfamily of E3 ubiquitin ligases, with over 400 members known in mammals. These modular complexes are tightly regulated in the cell. In this chapter, we highlight recent structural and biochemical advances shedding light on the assembly and architecture of cullin-RING ligases, their dynamic regulation by a variety of host factors, and their manipulation by viral pathogens and small molecules.


Assuntos
Proteínas Culina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Ubiquitina/metabolismo
2.
J Virol ; 88(6): 3309-19, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390320

RESUMO

UNLABELLED: The HIV-1 virion infectivity factor (Vif) targets the cellular cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) for degradation via the host ubiquitin-proteasome pathway. Vif recruits a cellular E3 ubiquitin ligase to polyubiquitinate A3G/F. The activity of Vif critically depends on the cellular core binding factor beta (CBFß). In this study, we investigated the Vif-CBFß interaction and the role of CBFß in the E3 ligase assembly. Vif-CBFß interaction requires an extensive region of Vif spanning most of its amino terminus and zinc finger region, and cullin 5 (Cul5) binding enhances the stability of the Vif-CBFß interaction. Our results further demonstrate that CBFß plays a critical role in facilitating Cul5 binding to the Vif/elongin B/elongin C complex. Vif, with or without bound substrate, is unable to bind Cul5 in the absence of CBFß. These studies support the notion that CBFß serves as a molecular chaperone to facilitate Vif-E3 ligase assembly. IMPORTANCE: The host antiviral restriction factors A3G/F inhibit viral replication. The HIV-1 protein Vif targets A3G/F for degradation. This immune evasion activity of Vif is dependent on the cellular factor CBFß. Multiple regions of Vif are known to be important for Vif function, but the mechanisms are unclear. The studies described here provide important information about the Vif-CBFß interaction interface and the function of CBFß in E3 ligase assembly. In particular, our comprehensive Vif-CBFß interface mapping results help to delineate the role of various Vif regions, determining if they are important for binding CBFß or A3G/F. Furthermore, our studies reveal an important potential mechanism of CBFß that has not been shown before. Our results suggest that CBFß may serve as a molecular chaperone to enable Vif to adopt an appropriate conformation for interaction with the Cul5-based E3 ligase. This study advances our understanding of how CBFß facilitates the Vif-mediated degradation of APOBEC3 proteins.


Assuntos
Subunidade beta de Fator de Ligação ao Core/metabolismo , Proteínas Culina/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Subunidade beta de Fator de Ligação ao Core/genética , Proteínas Culina/genética , Elonguina , Infecções por HIV/enzimologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
3.
BMC Biol ; 12: 70, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25159688

RESUMO

BACKGROUND: Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domains were first identified from mammalian proteins that bind lipid/sterol ligands via a hydrophobic pocket. In plants, predicted START domains are predominantly found in homeodomain leucine zipper (HD-Zip) transcription factors that are master regulators of cell-type differentiation in development. Here we utilized studies of Arabidopsis in parallel with heterologous expression of START domains in yeast to investigate the hypothesis that START domains are versatile ligand-binding motifs that can modulate transcription factor activity. RESULTS: Our results show that deletion of the START domain from Arabidopsis Glabra2 (GL2), a representative HD-Zip transcription factor involved in differentiation of the epidermis, results in a complete loss-of-function phenotype, although the protein is correctly localized to the nucleus. Despite low sequence similarly, the mammalian START domain from StAR can functionally replace the HD-Zip-derived START domain. Embedding the START domain within a synthetic transcription factor in yeast, we found that several mammalian START domains from StAR, MLN64 and PCTP stimulated transcription factor activity, as did START domains from two Arabidopsis HD-Zip transcription factors. Mutation of ligand-binding residues within StAR START reduced this activity, consistent with the yeast assay monitoring ligand-binding. The D182L missense mutation in StAR START was shown to affect GL2 transcription factor activity in maintenance of the leaf trichome cell fate. Analysis of in vivo protein-metabolite interactions by mass spectrometry provided direct evidence for analogous lipid-binding activity in mammalian and plant START domains in the yeast system. Structural modeling predicted similar sized ligand-binding cavities of a subset of plant START domains in comparison to mammalian counterparts. CONCLUSIONS: The START domain is required for transcription factor activity in HD-Zip proteins from plants, although it is not strictly necessary for the protein's nuclear localization. START domains from both mammals and plants are modular in that they can bind lipid ligands to regulate transcription factor function in a yeast system. The data provide evidence for an evolutionarily conserved mechanism by which lipid metabolites can orchestrate transcription. We propose a model in which the START domain is used by both plants and mammals to regulate transcription factor activity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Fosfoproteínas/genética , Fatores de Transcrição/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Ligantes , Espectrometria de Massas , Camundongos , Organismos Geneticamente Modificados/genética , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
4.
Chem Sci ; 15(20): 7767-7780, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784751

RESUMO

The Light-Dependent Protochlorophyllide Oxidoreductase (LPOR) catalyzes a crucial step in chlorophyll biosynthesis: the rare biological photocatalytic reduction of the double C[double bond, length as m-dash]C bond in the precursor, protochlorophyllide (Pchlide). Despite its fundamental significance, limited structural insights into the active complex have hindered understanding of its reaction mechanism. Recently, a high-resolution cryo-EM structure of LPOR in its active conformation challenged our view of pigment binding, residue interactions, and the catalytic process. Surprisingly, this structure contrasts markedly with previous assumptions, particularly regarding the orientation of the bound Pchlide. To gain insights into the substrate binding puzzle, we conducted molecular dynamics simulations, quantum-mechanics/molecular-mechanics (QM/MM) calculations, and site-directed mutagenesis. Two Pchlide binding modes were considered, one aligning with historical proposals (mode A) and another consistent with the recent experimental data (mode B). Binding energy calculations revealed that in contrast to the non-specific interactions found for mode A, mode B exhibits distinct stabilizing interactions that support more thermodynamically favorable binding. A comprehensive analysis incorporating QM/MM-based local energy decomposition unraveled a complex interaction network involving Y177, H319, and the C131 carboxy group, influencing the pigment's excited state energy and potentially contributing to substrate specificity. Importantly, our results uniformly favor mode B, challenging established interpretations and emphasizing the need for a comprehensive re-evaluation of the LPOR reaction mechanism in a way that incorporates accurate structural information on pigment interactions and substrate-cofactor positioning in the binding pocket. The results shed light on the intricacies of LPOR's catalytic mechanism and provide a solid foundation for further elucidating the secrets of chlorophyll biosynthesis.

5.
Cancer Discov ; 14(7): 1206-1225, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563906

RESUMO

IL2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, whereas others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL2 to CD8+ T cells, which are key antitumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, a CD8 cis-targeted IL2 that demonstrates over 500-fold preference for CD8+ T cells over natural killer and regulatory T cells (Tregs), which may contribute to toxicity and immunosuppression, respectively. AB248 recapitulated IL2's effects on CD8+ T cells in vitro and induced selective expansion of CD8+T cells in primates. In mice, an AB248 surrogate demonstrated superior antitumor activity and enhanced tolerability as compared with an untargeted IL2Rßγ agonist. Efficacy was associated with the expansion and phenotypic enhancement of tumor-infiltrating CD8+ T cells, including the emergence of a "better effector" population. These data support the potential utility of AB248 in clinical settings. Significance: The full potential of IL2 therapy remains to be unlocked. We demonstrate that toxicity can be decoupled from antitumor activity in preclinical models by limiting IL2 signaling to CD8+ T cells, supporting the development of CD8+ T cell-selective IL2 for the treatment of cancer. See related article by Kaptein et al. p. 1226.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Animais , Linfócitos T CD8-Positivos/imunologia , Interleucina-2/farmacologia , Camundongos , Humanos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Neoplasias/imunologia , Neoplasias/tratamento farmacológico
6.
Sci Transl Med ; 16(729): eadi1572, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198572

RESUMO

CD8+ T cells are key antiviral effectors against hepatitis B virus (HBV), yet their number and function can be compromised in chronic infections. Preclinical HBV models displaying CD8+ T cell dysfunction showed that interleukin-2 (IL-2)-based treatment, unlike programmed cell death ligand 1 (PD-L1) checkpoint blockade, could reverse this defect, suggesting its therapeutic potential against HBV. However, IL-2's effectiveness is hindered by its pleiotropic nature, because its receptor is found on various immune cells, including regulatory T (Treg) cells and natural killer (NK) cells, which can counteract antiviral responses or contribute to toxicity, respectively. To address this, we developed a cis-targeted CD8-IL2 fusion protein, aiming to selectively stimulate dysfunctional CD8+ T cells in chronic HBV. In a mouse model, CD8-IL2 boosted the number of HBV-reactive CD8+ T cells in the liver without substantially altering Treg or NK cell counts. These expanded CD8+ T cells exhibited increased interferon-γ and granzyme B production, demonstrating enhanced functionality. CD8-IL2 treatment resulted in substantial antiviral effects, evidenced by marked reductions in viremia and antigenemia and HBV core antigen-positive hepatocytes. In contrast, an untargeted CTRL-IL2 led to predominant NK cell expansion, minimal CD8+ T cell expansion, negligible changes in effector molecules, and minimal antiviral activity. Human CD8-IL2 trials in cynomolgus monkeys mirrored these results, achieving a roughly 20-fold increase in peripheral blood CD8+ T cells without affecting NK or Treg cell numbers. These data support the development of CD8-IL2 as a therapy for chronic HBV infection.


Assuntos
Hepatite B Crônica , Interleucina-2 , Humanos , Animais , Camundongos , Vírus da Hepatite B , Linfócitos T CD8-Positivos , Hepatite B Crônica/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
J Mol Biol ; 435(3): 167920, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528084

RESUMO

Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) has been identified as a nuclear DNA sensor. Upon viral infection, hnRNP A2/B1 recognizes pathogen-derived DNA as a homodimer, which is a prerequisite for its translocation to the cytoplasm to activate the interferon response. However, the DNA binding mechanism inducing hnRNP A2/B1 homodimerization is unknown. Here, we show the crystal structure of the RNA recognition motif (RRM) of hnRNP A2/B1 in complex with a U-shaped ssDNA, which mediates the formation of a newly observed protein dimer. Our biochemical assays and mutagenesis studies confirm that the hnRNP A2/B1 homodimer forms in solution by binding to pre-generated ssDNA or dsDNA with a U-shaped bulge. These results depict a potential functional state of hnRNP A2/B1 in antiviral immunity and other cellular processes.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Multimerização Proteica , DNA/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo
8.
Commun Biol ; 6(1): 364, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012333

RESUMO

Due to the continuous evolution of SARS-CoV-2, the Omicron variant has emerged and exhibits severe immune evasion. The high number of mutations at key antigenic sites on the spike protein has made a large number of existing antibodies and vaccines ineffective against this variant. Therefore, it is urgent to develop efficient broad-spectrum neutralizing therapeutic drugs. Here we characterize a rabbit monoclonal antibody (RmAb) 1H1 with broad-spectrum neutralizing potency against Omicron sublineages including BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, BA.3 and BA.4/5. Cryo-electron microscopy (cryo-EM) structure determination of the BA.1 spike-1H1 Fab complexes shows that 1H1 targets a highly conserved region of RBD and avoids most of the circulating Omicron mutations, explaining its broad-spectrum neutralization potency. Our findings indicate 1H1 as a promising RmAb model for designing broad-spectrum neutralizing antibodies and shed light on the development of therapeutic agents as well as effective vaccines against newly emerging variants in the future.


Assuntos
Anticorpos Monoclonais , COVID-19 , Humanos , Anticorpos Monoclonais/farmacologia , SARS-CoV-2/genética , Microscopia Crioeletrônica
9.
Cell Rep ; 39(5): 110770, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35477022

RESUMO

The emergence of the SARS-CoV-2 Omicron variant is dominant in many countries worldwide. The high number of spike mutations is responsible for the broad immune evasion from existing vaccines and antibody drugs. To understand this, we first present the cryo-electron microscopy structure of ACE2-bound SARS-CoV-2 Omicron spike. Comparison to previous spike antibody structures explains how Omicron escapes these therapeutics. Secondly, we report structures of Omicron, Delta, and wild-type spikes bound to a patient-derived Fab antibody fragment (510A5), which provides direct evidence where antibody binding is greatly attenuated by the Omicron mutations, freeing spike to bind ACE2. Together with biochemical binding and 510A5 neutralization assays, our work establishes principles of binding required for neutralization and clearly illustrates how the mutations lead to antibody evasion yet retain strong ACE2 interactions. Structural information on spike with both bound and unbound antibodies collectively elucidates potential strategies for generation of therapeutic antibodies.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Humanos , Fragmentos Fab das Imunoglobulinas , Glicoproteína da Espícula de Coronavírus
10.
Nat Plants ; 7(4): 437-444, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33875834

RESUMO

Chlorophyll biosynthesis, crucial to life on Earth, is tightly regulated because its precursors are phototoxic1. In flowering plants, the enzyme light-dependent protochlorophyllide oxidoreductase (LPOR) captures photons to catalyse the penultimate reaction: the reduction of a double bond within protochlorophyllide (Pchlide) to generate chlorophyllide (Chlide)2,3. In darkness, LPOR oligomerizes to facilitate photon energy transfer and catalysis4,5. However, the complete three-dimensional structure of LPOR, the higher-order architecture of LPOR oligomers and the implications of these self-assembled states for catalysis, including how LPOR positions Pchlide and the co-factor NADPH, remain unknown. Here, we report the atomic structure of LPOR assemblies by electron cryo-microscopy. LPOR polymerizes with its substrates into helical filaments around constricted lipid bilayer tubes. Portions of LPOR and Pchlide insert into the outer membrane leaflet, targeting the product, Chlide, to the membrane for the final reaction site of chlorophyll biosynthesis. In addition to its crucial photocatalytic role, we show that in darkness LPOR filaments directly shape membranes into high-curvature tubules with the spectral properties of the prolamellar body, whose light-triggered disassembly provides lipids for thylakoid assembly. Moreover, our structure of the catalytic site challenges previously proposed reaction mechanisms6. Together, our results reveal a new and unexpected synergy between photosynthetic membrane biogenesis and chlorophyll synthesis in plants, orchestrated by LPOR.


Assuntos
Arabidopsis/genética , Clorofila/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Microscopia Crioeletrônica , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
11.
bioRxiv ; 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013269

RESUMO

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

12.
Res Sq ; 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34031651

RESUMO

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

13.
Nat Struct Mol Biol ; 27(4): 392-399, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251413

RESUMO

The endosomal sorting complexes required for transport (ESCRTs) mediate diverse membrane remodeling events. These typically require ESCRT-III proteins to stabilize negatively curved membranes; however, recent work has indicated that certain ESCRT-IIIs also participate in positive-curvature membrane-shaping reactions. ESCRT-IIIs polymerize into membrane-binding filaments, but the structural basis for negative versus positive membrane remodeling by these proteins remains poorly understood. To learn how certain ESCRT-IIIs shape positively curved membranes, we determined structures of human membrane-bound CHMP1B-only, membrane-bound CHMP1B + IST1, and IST1-only filaments by cryo-EM. Our structures show how CHMP1B first polymerizes into a single-stranded helical filament, shaping membranes into moderate-curvature tubules. Subsequently, IST1 assembles a second strand on CHMP1B, further constricting the membrane tube and reducing its diameter nearly to the fission point. Each step of constriction thins the underlying bilayer, lowering the barrier to membrane fission. Our structures reveal how a two-component, sequential polymerization mechanism drives membrane tubulation, constriction and bilayer thinning.


Assuntos
Membrana Celular/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Proteínas Oncogênicas/ultraestrutura , Membrana Celular/química , Membrana Celular/genética , Citocinese/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/química , Endossomos/genética , Endossomos/ultraestrutura , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Polimerização , Conformação Proteica
14.
Science ; 370(6523): 1473-1479, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33154106

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains function after aerosolization, lyophilization, and heat treatment, which enables aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Afinidade de Anticorpos , Chlorocebus aethiops , Microscopia Crioeletrônica , Humanos , Testes de Neutralização , Ligação Proteica , Estabilidade Proteica , Anticorpos de Domínio Único/química , Glicoproteína da Espícula de Coronavírus/química , Células Vero
15.
bioRxiv ; 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32817938

RESUMO

Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.

16.
Science ; 364(6439): 491-495, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048491

RESUMO

The integrated stress response (ISR) tunes the rate of protein synthesis. Control is exerted by phosphorylation of the general translation initiation factor eIF2. eIF2 is a guanosine triphosphatase that becomes activated by eIF2B, a two-fold symmetric and heterodecameric complex that functions as eIF2's dedicated nucleotide exchange factor. Phosphorylation converts eIF2 from a substrate into an inhibitor of eIF2B. We report cryo-electron microscopy structures of eIF2 bound to eIF2B in the dephosphorylated state. The structures reveal that the eIF2B decamer is a static platform upon which one or two flexible eIF2 trimers bind and align with eIF2B's bipartite catalytic centers to catalyze nucleotide exchange. Phosphorylation refolds eIF2α, allowing it to contact eIF2B at a different interface and, we surmise, thereby sequestering it into a nonproductive complex.


Assuntos
Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/química , Nucleotídeos de Guanina/química , Biossíntese de Proteínas , Estresse Fisiológico , Microscopia Crioeletrônica , Ativação Enzimática , Enzimas , Humanos , Modelos Químicos , Fosforilação , Conformação Proteica , Multimerização Proteica
17.
Nat Struct Mol Biol ; 26(12): 1176-1183, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792451

RESUMO

HIV-1 virion infectivity factor (Vif) promotes degradation of the antiviral APOBEC3 (A3) proteins through the host ubiquitin-proteasome pathway to enable viral immune evasion. Disrupting Vif-A3 interactions to reinstate the A3-catalyzed suppression of human immunodeficiency virus type 1 (HIV-1) replication is a potential approach for antiviral therapeutics. However, the molecular mechanisms by which Vif recognizes A3 proteins remain elusive. Here we report a cryo-EM structure of the Vif-targeted C-terminal domain of human A3F in complex with HIV-1 Vif and the cellular cofactor core-binding factor beta (CBFß) at 3.9-Å resolution. The structure shows that Vif and CBFß form a platform to recruit A3F, revealing a direct A3F-recruiting role of CBFß beyond Vif stabilization, and captures multiple independent A3F-Vif interfaces. Together with our biochemical and cellular studies, our structural findings establish the molecular determinants that are critical for Vif-mediated neutralization of A3F and provide a comprehensive framework of how HIV-1 Vif hijacks the host protein degradation machinery to counteract viral restriction by A3F.


Assuntos
Citosina Desaminase/química , HIV-1/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Subunidade beta de Fator de Ligação ao Core/química , Microscopia Crioeletrônica , Citosina Desaminase/antagonistas & inibidores , Citosina Desaminase/ultraestrutura , Humanos , Evasão da Resposta Imune , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteólise , Relação Estrutura-Atividade , Produtos do Gene vif do Vírus da Imunodeficiência Humana/farmacologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/ultraestrutura
19.
Science ; 359(6383)2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29599213

RESUMO

Regulation by the integrated stress response (ISR) converges on the phosphorylation of translation initiation factor eIF2 in response to a variety of stresses. Phosphorylation converts eIF2 from a substrate to a competitive inhibitor of its dedicated guanine nucleotide exchange factor, eIF2B, thereby inhibiting translation. ISRIB, a drug-like eIF2B activator, reverses the effects of eIF2 phosphorylation, and in rodents it enhances cognition and corrects cognitive deficits after brain injury. To determine its mechanism of action, we solved an atomic-resolution structure of ISRIB bound in a deep cleft within decameric human eIF2B by cryo-electron microscopy. Formation of fully active, decameric eIF2B holoenzyme depended on the assembly of two identical tetrameric subcomplexes, and ISRIB promoted this step by cross-bridging a central symmetry interface. Thus, regulation of eIF2B assembly emerges as a rheostat for eIF2B activity that tunes translation during the ISR and that can be further modulated by ISRIB.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Cicloexilaminas/química , Cicloexilaminas/farmacologia , Fator de Iniciação 2B em Eucariotos/química , Memória/efeitos dos fármacos , Nootrópicos/química , Nootrópicos/farmacologia , Microscopia Crioeletrônica , Escherichia coli , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/ultraestrutura , Humanos , Mutação , Fosforilação , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA