Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(3): 271, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561192

RESUMO

Rice (Oryza sativa L.) is one of the most important dietary carbohydrate sources for half of the world's population. However, it is not well adapted to environmental stress conditions, necessitating to create new and improved varieties to help ensure sufficient rice production in the face of rising populations and shrinking arable land. Recently, the development of the CRISPR/Cas9 gene editing system has allowed researchers to study functional genomics and engineer new rice varieties with great efficiency compared to conventional methods. In this study, we investigate the involvement of OsGER4, a germin-like protein identified by a genome-wide association study that is associated with rice root development under a stress hormone jasmonic acids treatment. Analysis of the OsGER4 promoter region revealed a series of regulatory elements that connect this gene to ABA signaling and water stress response. Under heat stress, osger4 mutant lines produce a significantly lower crown root than wild-type Kitaake rice. The loss of OsGER4 also led to the reduction of lateral root development. Using the GUS promoter line, OsGER4 expression was detected in the epidermis of the crown root primordial, in the stele of the crown root, and subsequently in the primordial of the lateral root. Taken together, these results illustrated the involvement of OsGER4 in root development under heat stress by regulating auxin transport through plasmodesmata, under control by both ABA and auxin signaling.


Assuntos
Oryza , Oryza/metabolismo , Raízes de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Planta ; 257(3): 57, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795295

RESUMO

MAIN CONCLUSION: Induced mutations in the SC-uORF of the tomato transcription factor gene SlbZIP1 by the CRISPR/Cas9 system led to the high accumulation of sugar and amino acid contents in tomato fruits. Tomato (Solanum lycopersicum) is one of the most popular and consumed vegetable crops in the world. Among important traits for tomato improvement such as yield, biotic and abiotic resistances, appearance, post-harvest shelf life and fruit quality, the last one seems to face more challenges because of its genetic and biochemical complexities. In this study, a dual-gRNAs CRISPR/Cas9 system was developed to induce targeted mutations in uORF regions of the SlbZIP1, a gene involved in the sucrose-induced repression of translation (SIRT) mechanism. Different induced mutations in the SlbZIP1-uORF region were identified at the T0 generation, stably transferred to the offspring, and no mutation was found at potential off-target sites. The induced mutations in the SlbZIP1-uORF region affected the transcription of SlbZIP1 and related genes in sugar and amino acid biosynthesis. Fruit component analysis showed significant increases in soluble solid, sugar and total amino acid contents in all SlbZIP1-uORF mutant lines. The accumulation of sour-tasting amino acids, including aspartic and glutamic acids, raised from 77 to 144%, while the accumulation of sweet-tasting amino acids such as alanine, glycine, proline, serine, and threonine increased from 14 to 107% in the mutant plants. Importantly, the potential SlbZIP1-uORF mutant lines with desirable fruit traits and no impaired effect on plant phenotype, growth and development were identified under the growth chamber condition. Our result indicates the potential utility of the CRISPR/Cas9 system for fruit quality improvement in tomato and other important crops.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Aminoácidos/metabolismo , Açúcares/metabolismo , Solanum lycopersicum/genética , Sistemas CRISPR-Cas , Frutas/genética , Frutas/metabolismo
3.
Eur J Med Chem ; 276: 116690, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39032404

RESUMO

Small molecules that exhibit broad-spectrum enteroviral inhibitory activity by targeting viral replication proteins are highly desired in antiviral drug discovery studies. To discover new human rhinovirus (hRV) inhibitors, we performed a high-throughput screening of 100,000 compounds from the Korea Chemical Bank library. This search led to identification of two phosphatidylinositol-4-kinase IIIß (PI4KIIIß) inhibitors having the pyrazolo-pyrimidine core structure, which display moderate anti-rhinoviral activity along with mild cytotoxicity. The results of a study aimed at optimizing the activity of the hit compounds showed that the pyrazolo-pyrimidine derivative 6f exhibits the highest activity (EC50 = 0.044, 0.066, and 0.083 µM for hRV-B14, hRV-A16, and hRV-A21, respectively) and moderate toxicity (CC50 = 31.38 µM). Furthermore, 6f has broad-spectrum activities against various hRVs, coxsackieviruses and other enteroviruses, such as EV-A71, EV-D68. An assessment of kinase inhibition potencies demonstrated that 6f possesses a high and selective kinase inhibition activity against PI4KIIIß (IC50 value of 0.057 µM) and not against PI4KIIIα (>10 µM). Moreover, 6f exhibits modest hepatic stability (46.9 and 55.3 % remaining after 30 min in mouse and human liver microsomes, respectively). Finally, an in vivo study demonstrated that 6f possesses a desirable pharmacokinetic profile reflected in low systemic clearance (0.48 L∙h-1 kg-1) and modest oral bioavailability (52.4 %). Hence, 6f (KR-26549) appears to be an ideal lead for the development of new antiviral drugs.

4.
Biosci Biotechnol Biochem ; 76(6): 1075-84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22790926

RESUMO

Microorganisms residing in the rumens of cattle represent a rich source of lignocellulose-degrading enzymes, since their diet consists of plant-based materials that are high in cellulose and hemicellulose. In this study, a metagenomic library was constructed from buffalo rumen contents using pCC1FOS fosmid vector. Ninety-three clones from the pooled library of approximately 10,000 clones showed degrading activity against AZCL-HE-Cellulose, whereas four other clones showed activity against AZCL-Xylan. Contig analysis of pyrosequencing data derived from the selected strongly positive clones revealed 15 ORFs that were closely related to lignocellulose-degrading enzymes belonging to several glycosyl hydrolase families. Glycosyl hydrolase family 5 (GHF5) was the most abundant glycosyl hydrolase found, and a majority of the GHF5s in our metagenomes were closely related to several ruminal bacteria, especially ones from other buffalo rumen metagenomes. Characterization of BT-01, a selected clone with highest cellulase activity from the primary plate screening assay, revealed a cellulase encoding gene with optimal working conditions at pH 5.5 at 50 °C. Along with its stability over acidic pH, the capability efficiently to hydrolyze cellulose in feed for broiler chickens, as exhibited in an in vitro digestibility test, suggests that BT-01 has potential application as a feed supplement.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Celulases/isolamento & purificação , Lignina/metabolismo , Metagenoma , Sequência de Aminoácidos , Ração Animal , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Búfalos , Celulases/genética , Celulases/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Biblioteca Gênica , Vetores Genéticos , Concentração de Íons de Hidrogênio , Metagenômica , Consórcios Microbianos/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Rúmen/enzimologia , Rúmen/microbiologia , Análise de Sequência de DNA , Temperatura , Xilanos/metabolismo
5.
Saudi J Biol Sci ; 28(12): 7175-7181, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867020

RESUMO

Soil is contaminated with salinity, which inhibits plant growth and development and reduces crop yields. The DREB (dehydration responsive element binding protein) gene responds to salt stresses through enhanced transcriptional expression and activation of genes involved in plant salinity resistance. In this study, we present the results of the analysis of the expression of the GmDREB6 transgene, a gene that encodes the soybean DREB6 transcription factor, regulating the transcription of the NtP5CS and NtCLC genes in transgenic tobacco under salt stress conditions. The transcription of GmDREB6, NtP5CS, and NtCLC in transgenic tobacco lines was confirmed by qRT-PCR. Under salt stress conditions, the GmDREB6 gene transcription levels in the transgenic tobacco lines L1 and L9 had increased from 2.40- to 3.22- fold compared with the condition without salinity treatment. Two transgenic lines, L1 and L9, had transcription levels of the P5CS gene that had increased from 1.24- to 3.60- fold compared with WT plants. For the NtCLC gene, under salt stress conditions, the transgenic lines had transcription levels that had increased by 3.65-4.54 (fold) compared with WT plants (P < 0.05). The L1-transgenic tobacco line showed simultaneous expression of both the GmDREB6 transgene and two intrinsic genes, the NtP5CS and NtCLC genes. This study demonstrated that expression of the GmDREB6 gene from soybean increases the transcription levels of the NtP5CS and NtCLC genes in transgenic tobacco plants under salt stress conditions. The analysis results have suggested that the GmDREB6 gene is a potential candidate for improving the salt tolerance of plants, opening up research and development opportunities for salt stress-tolerant crops to respond to climate change and the rise in sea levels.

6.
Front Plant Sci ; 11: 612942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391326

RESUMO

Raffinose family oligosaccharides (RFOs) are major soluble carbohydrates in soybean seeds that cannot be digested by human and other monogastric animals. Hence, a major goal is to reduce RFO levels to improve the nutritional quality of soybean. In this study, we utilized a dual gRNAs CRISPR/Cas9 system to induce knockouts in two soybean galactinol synthase (GOLS) genes, GmGOLS1A and its homeolog GmGOLS1B. Genotyping of T0 plants showed that the construct design was efficient in inducing various deletions in the target sites or sequences spanning the two target sites of both GmGOLS1A and GmGOLS1B genes. A subset of induced alleles was successfully transferred to progeny and, at the T2 generation, we identified null segregants of single and double mutant genotypes without off-target induced mutations. The seed carbohydrate analysis of double mutant lines showed a reduction in the total RFO content of soybean seed from 64.7 mg/g dry weight to 41.95 mg/g dry weight, a 35.2% decrease. On average, the stachyose content, the most predominant RFO in soybean seeds, decreased by 35.4% in double mutant soybean, while the raffinose content increased by 41.7%. A slight decrease in verbascose content was also observed in mutant lines. Aside from changes in soluble carbohydrate content, some mutant lines also exhibited increased protein and fat contents. Otherwise, no difference in seed weight, seed germination, plant development and morphology was observed in the mutants. Our findings indicate that GmGOLS1A and GmGOLS1B contribute to the soybean oligosaccharide profile through RFO biosynthesis pathways, and are promising targets for future investigation, as well as crop improvement efforts. Our results also demonstrate the potential in using elite soybean cultivars for transformation and targeted genome editing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA