Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(3): 907-917, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32737882

RESUMO

BACKGROUND: Efficient utilization of dietary fibers (DFs) is important for optimizing feed resource utilization and animal health. The aim of the current study was to assess the effects of DFs with varying physicochemical properties (bulky, viscous, and fermentable) on fermentation kinetics and microbial composition during in vitro fermentation by fecal inoculum from lactating sow. According to the physicochemical properties, three different DFs, lignocellulose (LC), modified cassava starch (MCS) and konjac flour (KF) were selected as bulky fiber, fermentable fiber and viscous fiber respectively. Gas production, short-chain fatty acids (SCFAs) profiles and microbial composition were monitored during the fermentation. RESULTS: Results showed that the gas production in 72 h (GP72h ) ranked as: KF > MCS > LC (P < 0.05). The halftime of asymptotic gas production ranked as: KF < MCS = LC (P < 0.001). At 36 h of fermentation, MCS group showed higher concentrations of formic acid and lactate than LC and KF groups, whereas KF group showed higher concentrations of propionate and butyrate than LC and MCS groups (P < 0.05). At 72 h of fermentation, KF group showed higher concentrations of formic acid, lactate and propionate than LC and MCS groups, whereas MCS group showed higher concentrations of acetate and butyrate than LC and KF groups (P < 0.05). At 36 h of fermentation, Anaerovibrio and Erysipelatoclostridium abundances were higher in KF group, whereas Proteiniclasticum abundance was higher in MCS group. At 72 h of fermentation, the abundance of Fibrobacter in LC group was higher than that in MCS and KF groups. In addition, we also observed that the abundances of certain specific bacteria (Anaerovibrio and Erysipelatoclostridium) were closely related to the SCFAs production (propionate and butyrate) at different fermentation times. CONCLUSION: Collectively, the present study revealed that KF is a fast fermentation fiber which could produce propionate and butyrate rapidly, whereas LC is difficult to be fermented by bacteria. In addition, the fermentation of DFs with different physicochemical properties had divergent impacts on microbial composition and SCFA production. These findings deepen our understanding of the mechanisms of interaction between DFs and intestinal microbiota, and provide new ideas for the rational use of fiber resources in lactating sows. © 2020 Society of Chemical Industry.


Assuntos
Bactérias/metabolismo , Fibras na Dieta/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Suínos/metabolismo , Amorphophallus/química , Amorphophallus/metabolismo , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Dieta/veterinária , Fibras na Dieta/análise , Digestão , Ácidos Graxos Voláteis/química , Ácidos Graxos Voláteis/metabolismo , Fermentação , Cinética , Lignina/química , Lignina/metabolismo , Manihot/química , Manihot/metabolismo , Amido/química , Amido/metabolismo , Suínos/microbiologia
2.
Asian-Australas J Anim Sci ; 33(3): 398-407, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31480180

RESUMO

OBJECTIVE: The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. METHODS: Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. RESULTS: Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. CONCLUSION: The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.

3.
Microbiome ; 11(1): 19, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721210

RESUMO

BACKGROUND: Low birth weight (LBW) is associated with intestinal inflammation and dysbiosis after birth. However, the underlying mechanism remains largely unknown. OBJECTIVE: In the present study, we aimed to investigate the metabolism, therapeutic potential, and mechanisms of action of bile acids (BAs) in LBW-induced intestinal inflammation in a piglet model. METHODS: The fecal microbiome and BA profile between LBW and normal birth weight (NBW) neonatal piglets were compared. Fecal microbiota transplantation (FMT) was employed to further confirm the linkage between microbial BA metabolism and intestinal inflammation. The therapeutic potential of ursodeoxycholic acid (UDCA), a highly differentially abundant BA between LBW and NBW piglets, in alleviating colonic inflammation was evaluated in both LBW piglets, an LBW-FMT mice model, and a DSS-induced colitis mouse model. The underlying cellular and molecular mechanisms by which UDCA suppresses intestinal inflammation were also investigated in both DSS-treated mice and a macrophage cell line. Microbiomes were analyzed by using 16S ribosomal RNA sequencing. Fecal and intestinal BA profiles were measured by using targeted BA metabolomics. Levels of farnesoid X receptor (FXR) were knocked down in J774A.1 cells with small interfering RNAs. RESULTS: We show a significant difference in both the fecal microbiome and BA profiles between LBW and normal birth weight animals in a piglet model. Transplantation of the microbiota of LBW piglets to antibiotic-treated mice leads to intestinal inflammation. Importantly, oral administration of UDCA, a major BA diminished in the intestinal tract of LBW piglets, markedly alleviates intestinal inflammation in LBW piglets, an LBW-FMT mice model, and a mouse model of colitis by inducing M2 macrophage polarization. Mechanistically, UDCA reduces inflammatory cytokine production by engaging BA receptor FXR while suppressing NF-κB activation in macrophages. CONCLUSIONS: These findings establish a causal relationship between LBW-associated intestinal abnormalities and dysbiosis, suggesting that restoring intestinal health and postnatal maldevelopment of LBW infants may be achieved by targeting intestinal microbiota and BA metabolism. Video Abstract.


Assuntos
Colite , Microbioma Gastrointestinal , Suínos , Animais , Camundongos , Ácido Ursodesoxicólico , Peso ao Nascer , Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
4.
Nutrients ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745241

RESUMO

Constipation is a common problem in sows and women during late pregnancy. Dietary fiber has potential in the regulation of intestinal microbiota, thereby promoting intestinal motility and reducing constipation. However, the effects of fibers with different physicochemical properties on intestinal microbe and constipation during late pregnancy have not been fully explored. In this study, a total of 80 sows were randomly allocated to control and one of three dietary fiber treatments from day 85 of gestation to delivery: LIG (lignocellulose), PRS (resistant starch), and KON (konjaku flour). Results showed that the defecation frequency and fecal consistency scores were highest in PRS. PRS and KON significantly increased the level of gut motility regulatory factors, 5-hydroxytryptamine (5-HT), motilin (MTL), and acetylcholinesterase (AChE) in serum. Moreover, PRS and KON promoted the IL-10 level and reduced the TNF-α level in serum. Furthermore, maternal PRS and KON supplementation significantly reduced the number of stillborn piglets. Microbial sequencing analysis showed that PRS and KON increased short-chain fatty acids (SCFAs)-producing genera Bacteroides and Parabacteroides and decreased the abundance of endotoxin-producing bacteria Desulfovibrio and Oscillibacter in feces. Moreover, the relative abundance of Turicibacter and the fecal butyrate concentration in PRS were the highest. Correlation analysis further revealed that the defecation frequency and serum 5-HT were positively correlated with Turicibacter and butyrate. In conclusion, PRS is the best fiber source for promoting gut motility, which was associated with increased levels of 5-HT under specific bacteria Turicibacter and butyrate stimulation, thereby relieving constipation. Our findings provide a reference for dietary fiber selection to improve intestinal motility in late pregnant mothers.


Assuntos
Microbioma Gastrointestinal , Animais , Feminino , Gravidez , Acetilcolinesterase , Bactérias , Butiratos/farmacologia , Constipação Intestinal/terapia , Fibras na Dieta/análise , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Serotonina/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA