Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(46): 23152-23162, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659045

RESUMO

The nexin-dynein regulatory complex (N-DRC) in motile cilia and flagella functions as a linker between neighboring doublet microtubules, acts to stabilize the axonemal core structure, and serves as a central hub for the regulation of ciliary motility. Although the N-DRC has been studied extensively using genetic, biochemical, and structural approaches, the precise arrangement of the 11 (or more) N-DRC subunits remains unknown. Here, using cryo-electron tomography, we have compared the structure of Chlamydomonas wild-type flagella to that of strains with specific DRC subunit deletions or rescued strains with tagged DRC subunits. Our results show that DRC7 is a central linker subunit that helps connect the N-DRC to the outer dynein arms. DRC11 is required for the assembly of DRC8, and DRC8/11 form a subcomplex in the proximal lobe of the linker domain that is required to form stable contacts to the neighboring B-tubule. Gold labeling of tagged subunits determines the precise locations of the previously ambiguous N terminus of DRC4 and C terminus of DRC5. DRC4 is now shown to contribute to the core scaffold of the N-DRC. Our results reveal the overall architecture of N-DRC, with the 3 subunits DRC1/2/4 forming a core complex that serves as the scaffold for the assembly of the "functional subunits," namely DRC3/5-8/11. These findings shed light on N-DRC assembly and its role in regulating flagellar beating.


Assuntos
Chlamydomonas/metabolismo , Dineínas/metabolismo , Flagelos/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Chlamydomonas/genética , Chlamydomonas/ultraestrutura , Estrutura Quaternária de Proteína
2.
Inorg Chem ; 55(3): 999-1001, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26760220

RESUMO

The single-crystal X-ray structure of Pd-doped Au25(SR)18 was solved. The crystal structure reveals that in PdAu24(SR)18, the Pd atom is localized only to the centroid of the Au25(SR)18 cluster. This single-crystal X-ray structure shows that PdAu24(SR)18(0) is well conceptualized with the superatom theory. The PdAu24(SR)18(0) charge state is isoelectronic with Au25(SR)18(+1) as determined by a first order Jahn-Teller effect of similar magnitude and by electrochemical comparison. The previously reported increased stability of PdAu24(SR)18 can be rationalized in terms of Pd-Au bonds that are shorter than the Au-Au bonds in Au25(SR)18.


Assuntos
Etilenoglicóis/química , Ouro/química , Compostos Organometálicos/química , Paládio/química , Cristalografia por Raios X , Modelos Moleculares , Compostos Organometálicos/síntese química
3.
Proc Natl Acad Sci U S A ; 110(38): E3640-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003131

RESUMO

Despite considerable efforts to sequence hypermutated cancers such as melanoma, distinguishing cancer-driving genes from thousands of recurrently mutated genes remains a significant challenge. To circumvent the problematic background mutation rates and identify new melanoma driver genes, we carried out a low-copy piggyBac transposon mutagenesis screen in mice. We induced eleven melanomas with mutation burdens that were 100-fold lower relative to human melanomas. Thirty-eight implicated genes, including two known drivers of human melanoma, were classified into three groups based on high, low, or background-level mutation frequencies in human melanomas, and we further explored the functional significance of genes in each group. For two genes overlooked by prevailing discovery methods, we found that loss of membrane associated guanylate kinase, WW and PDZ domain containing 2 and protein tyrosine phosphatase, receptor type, O cooperated with the v-raf murine sarcoma viral oncogene homolog B (BRAF) recurrent V600E mutation to promote cellular transformation. Moreover, for infrequently mutated genes often disregarded by current methods, we discovered recurrent mitogen-activated protein kinase kinase kinase 1 (Map3k1)-activating insertions in our screen, mirroring recurrent MAP3K1 up-regulation in human melanomas. Aberrant expression of Map3k1 enabled growth factor-autonomous proliferation and drove BRAF-independent ERK signaling, thus shedding light on alternative means of activating this prominent signaling pathway in melanoma. In summary, our study contributes several previously undescribed genes involved in melanoma and establishes an important proof-of-principle for the utility of the low-copy transposon mutagenesis approach for identifying cancer-driving genes, especially those masked by hypermutation.


Assuntos
Elementos de DNA Transponíveis/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , MAP Quinase Quinase Quinase 1/metabolismo , Melanoma/genética , Mutagênese Insercional/genética , Transdução de Sinais/fisiologia , Animais , Western Blotting , Primers do DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Testes Genéticos , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Especificidade da Espécie
4.
Inorg Chem ; 53(13): 6500-2, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24956375

RESUMO

The single-crystal X-ray structure of Au25(SC2H4Ph)16(pBBT)2 is presented. The crystallized compound resulted from ligand exchange of Au25(SC2H4Ph)18 with pBBT as the incoming ligand, and for the first time, ligand exchange is structurally resolved on the widely studied Au25(SR)18 compound. A single ligand in the asymmetric unit is observed to exchange, corresponding to two ligands in the molecule because of the crystallographic symmetry. The ligand-exchanged Au25 is bonded to the most solvent-exposed Au atom in the structure, making the exchange event consistent with an associative mechanism. The apparent nonexchange of other ligands is rationalized through possible selective crystallization of the observed product and differential bond lengths.

5.
J Am Chem Soc ; 134(32): 13316-22, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22816317

RESUMO

Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reaction. Each of these ligand-binding sites is bonded to a different solvent-exposed Au atom, suggesting an associative mechanism for the initial ligand exchange. Density functional theory calculations modeling both thiol and thiolate incoming ligands postulate a mechanistic pathway for thiol-based ligand exchange. The discrete modification of a small set of ligand binding sites suggests Au(102)(p-MBA)(44) as a powerful platform for surface chemical engineering.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Solventes/química , Termodinâmica
6.
J Am Chem Soc ; 132(25): 8610-7, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20515031

RESUMO

Selective binding by metalloproteins to their cognate metal ions is essential to cellular survival. How proteins originally acquired the ability to selectively bind metals and evolved a diverse array of metal-centered functions despite the availability of only a few metal-coordinating functionalities remains an open question. Using a rational design approach (Metal-Templated Interface Redesign), we describe the transformation of a monomeric electron transfer protein, cytochrome cb(562), into a tetrameric assembly ((C96)RIDC-1(4)) that stably and selectively binds Zn(2+) and displays a metal-dependent conformational change reminiscent of a signaling protein. A thorough analysis of the metal binding properties of (C96)RIDC-1(4) reveals that it can also stably harbor other divalent metals with affinities that rival (Ni(2+)) or even exceed (Cu(2+)) those of Zn(2+) on a per site basis. Nevertheless, this analysis suggests that our templating strategy simultaneously introduces an increased bias toward binding a higher number of Zn(2+) ions (four high affinity sites) versus Cu(2+) or Ni(2+) (two high affinity sites), ultimately leading to the exclusive selectivity of (C96)RIDC-1(4) for Zn(2+) over those ions. More generally, our results indicate that an initial metal-driven nucleation event followed by the formation of a stable protein architecture around the metal provides a straightforward path for generating structural and functional diversity.


Assuntos
Citocromos c/metabolismo , Metais/metabolismo , Citocromos c/química , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato , Termodinâmica , Zinco/metabolismo
7.
Cell Rep ; 28(13): 3435-3449.e5, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553912

RESUMO

Comprehensive sequencing approaches have allowed for the identification of the most frequent contributors to cancer, known as drivers. They have also revealed a class of mutations in understudied, infrequently altered genes, referred to as "long tail" (LT) drivers. A key challenge has been to find clinically relevant LT drivers and to understand how they cooperate to drive disease. Here, we identified far upstream binding protein 1 (FUBP1) as an LT driver using an in vivo CRISPR screen. FUBP1 cooperates with other tumor suppressor genes to transform mammary epithelial cells by disrupting cellular differentiation and tissue architecture. Mechanistically, FUBP1 participates in regulating N6-methyladenosine (m6A) RNA methylation, and its loss leads to global changes in RNA splicing and widespread expression of aberrant driver isoforms. These findings suggest that somatic alteration of a single gene involved in RNA splicing and m6A methylation can produce the necessary panoply of contributors for neoplastic transformation.


Assuntos
Processamento Alternativo/genética , Proteínas de Ligação a DNA/genética , Neoplasias/genética , Oncogenes/genética , Proteínas de Ligação a RNA/genética , Genes Supressores de Tumor , Humanos
8.
ACS Omega ; 3(11): 14902-14909, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30533575

RESUMO

A glutathione reductase (GSHR)-like enzyme in Pseudomonas moraviensis stanleyae was previously implicated as underlying the bacterium's remarkable SeO3 2- tolerance. Herein, this enzyme is sequenced, recombinantly expressed, and fully characterized. The enzyme is highly adapted for selenodiglutathione substrates (K m = 336 µM) compared to oxidized glutathione (K m = 8.22 mM). The recombinant expression of this enzyme in the laboratory strains of Escherichia coli conveys a 10-fold increase in IC90 for SeO3 2-. Moreover, selenium nanoparticles are observed when the enzyme is overexpressed in the cells exposed to SeO3 2-, but not in the corresponding no-enzyme controls. The analyses of the structural homology models of the enzyme reveal changes in the parts of the enzyme associated with product release, which may underlie the Se substrate specialization. Combined, the observations of adaptation to Se reduction over oxidized glutathione reduction as well as the portability of this nanoparticle-mediated SeO3 2- tolerance into other cell lines suggest that the P. moraviensis GSHR may be better described as a GSHR-like metalloid reductase.

9.
Sci Rep ; 8(1): 1415, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362392

RESUMO

In cancer, tumor suppressor genes (TSGs) are frequently truncated, causing their encoded products to be non-functional or dominant-negative. We previously showed that premature polyadenylation (pPA) of MAGI3 truncates the gene, switching its functional role from a TSG to a dominant-negative oncogene. Here we report that MAGI3 undergoes pPA at the intron immediately downstream of its large internal exon, which is normally highly modified by N6-methyladenosine (m6A). In breast cancer cells that upregulate MAGI3 pPA , m6A levels in the large internal exon of MAGI3 are significantly reduced compared to cells that do not express MAGI3 pPA . We further find that MAGI3 pPA transcripts are significantly depleted of m6A modifications, in contrast to highly m6A-modified full-length MAGI3 mRNA. Finally, we analyze public expression data and find that other TSGs, including LATS1 and BRCA1, also undergo intronic pPA following large internal exons, and that m6A levels in these exons are reduced in pPA-activated breast cancer cells relative to untransformed mammary cells. Our study suggests that m6A may play a role in regulating intronic pPA of MAGI3 and possibly other TSGs, warranting further investigation.


Assuntos
Adenosina/análogos & derivados , Proteína BRCA1/genética , Neoplasias da Mama/genética , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Adenosina/metabolismo , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Éxons , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Íntrons , Proteínas de Membrana/metabolismo , Poliadenilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima
10.
J Phys Chem B ; 121(32): 7652-7659, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714685

RESUMO

Large-pore protein crystals (LPCs) are ordered biologically derived nanoporous materials exhibiting pore diameters greater than 8 nm. These substantial pores distinguish LPCs from typical nanoporous scaffolds, enabling engineered LPC materials to readily uptake, immobilize, and release macromolecular guests. In this study, macromolecular transport within an LPC environment was experimentally and computationally investigated by studying adsorption-coupled diffusion of Au25(glutathione)18 nanoclusters within a cross-linked LPC scaffold via time-lapse confocal microscopy, bulk equilibrium adsorption, and hindered diffusion simulation. Equilibrium adsorption data is congruent with a Langmuir adsorption model, exhibiting strong binding behavior between nanoclusters and the scaffold. The standard Gibbs free energy of binding is equivalent to -37.2 kJ/mol, and the maximum binding capacity of 1.25 × 103 mg/g corresponds to approximately 29 nanoclusters per LPC unit cell. The hindered diffusion model showed good agreement with experimental data, revealing a pore diffusion coefficient of 3.7 × 10-7 cm2/s under low nanocluster concentration. Furthermore, the model was sufficient to determine adsorption and desorption kinetic values for ka and kd equal to 13 cm3/mol·s and 1.7 × 10-7 s-1, respectively. At higher nanocluster concentrations, the simulated pore diffusion coefficient could be reduced by 3 orders of magnitude to 3.4 × 10-10 cm2/s due to the effects of pore occlusion. This study demonstrates a strategy to analyze adsorption-coupled diffusion data to better understand complex transport of fluorescent macromolecules into LPCs. This approach fits the observable fluorescence data to the key molecular details and will benefit downstream efforts to engineer LPC-based nanoporous materials.


Assuntos
Proteínas de Bactérias/química , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Difusão , Cinética , Microscopia Confocal , Porosidade , Termodinâmica , Imagem com Lapso de Tempo
11.
Elife ; 52016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27205883

RESUMO

Genetic mutation, chromosomal rearrangement and copy number amplification are common mechanisms responsible for generating gain-of-function, cancer-causing alterations. Here we report a new mechanism by which premature cleavage and polyadenylation (pPA) of RNA can produce an oncogenic protein. We identify a pPA event at a cryptic intronic poly(A) signal in MAGI3, occurring in the absence of local exonic and intronic mutations. The altered mRNA isoform, called MAGI3(pPA), produces a truncated protein that acts in a dominant-negative manner to prevent full-length MAGI3 from interacting with the YAP oncoprotein, thereby relieving YAP inhibition and promoting malignant transformation of human mammary epithelial cells. We additionally find evidence for recurrent expression of MAGI3(pPA) in primary human breast tumors but not in tumor-adjacent normal tissues. Our results provide an example of how pPA contributes to cancer by generating a truncated mRNA isoform that encodes an oncogenic, gain-of-function protein.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Membrana/biossíntese , Proteínas Mutantes/biossíntese , Poliadenilação , Isoformas de RNA/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/genética , Proteínas Mutantes/genética , Isoformas de RNA/genética
12.
Cell Rep ; 17(5): 1302-1317, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27783945

RESUMO

Overabundance of Slug protein is common in human cancer and represents an important determinant underlying the aggressiveness of basal-like breast cancer (BLBC). Despite its importance, this transcription factor is rarely mutated in BLBC, and the mechanism of its deregulation in cancer remains unknown. Here, we report that Slug undergoes acetylation-dependent protein degradation and identify the deacetylase SIRT2 as a key mediator of this post-translational mechanism. SIRT2 inhibition rapidly destabilizes Slug, whereas SIRT2 overexpression extends Slug stability. We show that SIRT2 deacetylates Slug protein at lysine residue K116 to prevent Slug degradation. Interestingly, SIRT2 is frequently amplified and highly expressed in BLBC. Genetic depletion and pharmacological inactivation of SIRT2 in BLBC cells reverse Slug stabilization, cause the loss of clinically relevant pathological features of BLBC, and inhibit tumor growth. Our results suggest that targeting SIRT2 may be a rational strategy for diminishing Slug abundance and its associated malignant traits in BLBC.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sirtuína 2/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Inativação Gênica , Células HEK293 , Humanos , Lisina/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Ligação Proteica , Estabilidade Proteica , Proteômica , Fatores de Transcrição da Família Snail/química , Especificidade por Substrato
13.
Nanoscale ; 8(25): 12693-6, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27264210

RESUMO

DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)∼17 (nitrilotriacetic acid)∼1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was confirmed by single crystal X-ray crystallography.


Assuntos
Ouro , Nanopartículas Metálicas , Proteínas/química , Cristalografia por Raios X , DNA
14.
Chem Sci ; 7(3): 1882-1890, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899911

RESUMO

The relationship between oxidation state, structure, and magnetism in many molecules is well described by first-order Jahn-Teller distortions. This relationship is not yet well defined for ligated nanoclusters and nanoparticles, especially the nano-technologically relevant gold-thiolate protected metal clusters. Here we interrogate the relationships between structure, magnetism, and oxidation state for the three stable oxidation states, -1, 0 and +1 of the thiolate protected nanocluster Au25(SR)18. We present the single crystal X-ray structures of the previously undetermined charge state Au25(SR)18+1, as well as a higher quality single crystal structure of the neutral compound Au25(SR)180. Structural data combined with SQUID magnetometry and DFT theory enable a complete description of the optical and magnetic properties of Au25(SR)18 in the three oxidation states. In aggregate the data suggests a first-order Jahn-Teller distortion in this compound. The high quality single crystal X-ray structure enables an analysis of the ligand-ligand and ligand-cluster packing interactions that underlie single-crystal formation in thiolate protected metal clusters.

16.
Nanoscale ; 7(41): 17320-7, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26350616

RESUMO

Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO3(2-) in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO3(2-) (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO3(2-) concentration, varying in size form 5 nm diameter when formed at 1.0 µM [SeO3(2-)] to 50 nm maximum diameter when formed at 100 µM [SeO3(2-)]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.


Assuntos
Nanopartículas/química , Pseudomonas/metabolismo , Ácido Selenioso/metabolismo , Selênio/química , Tamanho da Partícula , Selênio/metabolismo
17.
Nanoscale ; 5(21): 10525-33, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24057086

RESUMO

The absorption, distribution, metabolism and excretion (ADME) and pharmacokinetic (PK) properties of inorganic nanoparticles with hydrodynamic diameters between 2 and 20 nm are presently unpredictable. It is unclear whether unpredictable in vivo properties and effects arise from a subset of molecules in a nanomaterials preparation, or if the ADME/PK properties are ensemble properties of an entire preparation. Here we characterize the ADME/PK properties of atomically precise preparations of ligand protected gold nanoclusters in a murine model system. We constructed atomistic models and tested in vivo properties for five well defined compounds, based on crystallographically resolved Au25(SR)18 and Au102(SR)44 nanoclusters with different (SR) ligand shells. To rationalize unexpected distribution and excretion properties observed for several clusters in this study and others, we defined a set of atomistic structure-activity relationships (SAR) for nanoparticles, which includes previously investigated parameters such as particle hydrodynamic diameter and net charge, and new parameters such as hydrophobic surface area and surface charge density. Overall we find that small changes in particle formulation can provoke dramatic yet potentially predictable changes in ADME/PK.


Assuntos
Nanopartículas/metabolismo , Animais , Ouro/química , Camundongos , Modelos Animais , Nanopartículas/química , Relação Estrutura-Atividade , Propriedades de Superfície , Distribuição Tecidual
18.
PLoS One ; 6(10): e26650, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039523

RESUMO

Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB) transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease.


Assuntos
Elementos de DNA Transponíveis , Genes Reporter , Mutagênese , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA