Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 104(3): 495-507, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33185248

RESUMO

Hybridization is important for both animal breeders attempting to fix new phenotypic traits and researchers trying to unravel the mechanism of reproductive barriers in hybrid species and the process of speciation. In interspecies animal hybrids, gains made in terms of adaptation to environmental conditions and hybrid vigor may be offset by reduced fertility or sterility. Bovine hybrids exhibit remarkable hybrid vigor compared to their parents. However, the F1 male hybrid exhibits sterility, whereas the female is fertile. This male-biased sterility is consistent with the Haldane rule where heterogametic sex is preferentially rare, absent, or sterile in the progeny of two different species. The obstacle of fixing favorable traits and passing them to subsequent generations due to the male sterility is a major setback in improving the reproductive potential of bovines through hybridization. Multiperspective approaches such as molecular genetics, proteomics, transcriptomics, physiology, and endocrinology have been used by several researchers over the past decade in an attempt to unravel the potential mechanisms underlying male hybrid sterility. However, the mechanism of sterility in the hybrid male is still not completely unravelled. This review seeks to provide an update of the mechanisms of the sterility in the cattle-yak and other bovines.


Assuntos
Bovinos/genética , Hibridização Genética , Infertilidade Masculina/veterinária , Animais , Feminino , Vigor Híbrido/genética , Infertilidade Masculina/genética , Masculino , Testículo/patologia
2.
Front Vet Sci ; 9: 997709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213393

RESUMO

Leukemia inhibitory factor (LIF) is a multipotent cytokine of the IL-6 family which plays a critical role in the maturation and development of oocytes. This study evaluated the influence of LIF on the maturation and development ability of yak oocytes, and the quality of subsequent blastocysts under in vitro culture settings. Different concentrations of LIF (0, 25, 50, and 100 ng/mL) were added during the in vitro culture of oocytes to detect the maturation rate of oocytes, levels of mitochondria, reactive oxygen species (ROS), actin, and apoptosis in oocytes, mRNA transcription levels of apoptosis and antioxidant-related genes in oocytes, and total cell number and apoptosis levels in subsequent blastocysts. The findings revealed that 50 ng/mL LIF could significantly increase the maturation rate (p < 0.01), levels of mitochondria (p < 0.01) and actin (p < 0.01), and mRNA transcription levels of anti-apoptotic and antioxidant-related genes in yak oocytes. Also, 50 ng/mL LIF could significantly lower the generation of ROS (p < 0.01) and apoptosis levels of oocytes (p < 0.01). In addition, blastocysts formed from 50 ng/mL LIF-treated oocytes showed significantly larger total cell numbers (p < 0.01) and lower apoptosis rates (p < 0.01) than the control group. In conclusion, the addition of LIF during the in vitro maturation of yak oocytes improved the quality and the competence of maturation and development in oocytes, as well as the quality of subsequent blastocysts. The result of this study provided some insights into the role and function of LIF in vitro yak oocytes maturation, as well as provided fundamental knowledge for assisted reproductive technologies in the yak.

3.
Front Vet Sci ; 7: 201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426380

RESUMO

Endometritis is one of the main diseases which harm sheep husbandry. Astragalin and chlorogenic acid (CGA) are common active ingredients of traditional Chinese medicine (TCM) with immunoprotective, antioxidant, and anti-inflammatory properties. In the present study, sheep endometrial epithelium cells (SEECs) were successfully purified and identified, and the in vitro inflammation model of SEECs induced by Escherichia coli (E. coli) was successfully established. To explore the effect of astragalin and CGA on the inflammation induced by E. coli and its potential mechanism, six groups were set up, namely, group C, M, astragalin, CGA, BAY, and STR. Cells in group C were incubated with DMEM/F12 for 6 h, while cells in group M, astragalin, CGA, BAY, and STR were incubated with DMEM/F12, astragalin, CGA, BAY, and STR for 3 h, respectively, followed by E. coli infection at a multiplicity of infection (MOI) of 1 E. coli per cell for 3 h. Subsequently, the cells and the supernatant were collected to detect the expression of genes in the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway by ELISA, qPCR, and western blot. The results showed that E. coli could induce inflammation of SEECs in vitro, while astragalin and CGA could alleviate the inflammatory response induced by E. coli via inhibiting the activation of the TLR4/NF-κB signaling pathway, which provides a theoretical and experimental foundation for preventing sheep endometritis clinically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA