RESUMO
Rhizospheric soil is the richest niche of different microbes that produce biologically active metabolites. The current study investigated the antimicrobial, antifungal and anticancer activities of ethyl acetate extract of the potent rhizospheric fungus Aspergillus niger AK6 (AK-6). A total of six fungal isolates were isolated, and isolate AK-6 was selected based on primary screening. Further, it exhibited moderate antimicrobial activity against pathogens such as Klebsiella pneumonia, Candida albicans, Escherichia coli, Shigella flexneri, Bacillus subtilis and Staphylococcus aureus. The morphological and molecular characterization (18S rRNA) confirmed that the isolate AK-6 belonged to Aspergillus niger. Further, AK-6 showed potent antifungal activity with 47.2%, 59.4% and 64.1% of inhibition against Sclerotium rolfsii, Cercospora canescens and Fusarium sambucinum phytopathogens. FT-IR analysis displayed different biological functional groups. Consequently, the GC-MS analysis displayed bioactive compounds, namely, n-didehydrohexacarboxyl-2,4,5-trimethylpiperazine (23.82%), dibutyl phthalate (14.65%), e-5-heptadecanol (8.98%), and 2,4-ditert-butylphenol (8.60%), among the total of 15 compounds isolated. Further, the anticancer activity of AK-6 was exhibited against the MCF-7 cell line of human breast adenocarcinoma with an IC50 value of 102.01 µg/mL. Furthermore, flow cytometry depicted 17.3%, 26.43%, and 3.16% of early and late apoptosis and necrosis in the AK-6 extarct treated MCF-7 cell line, respectively. The results of the present analysis suggest that the isolated Aspergillus niger strain AK-6 extract has the potential to be explored as a promising antimicrobial, antifungal and anticancer drug for medical and agricultural applications.
RESUMO
Background and Objectives: Saussurea lappa (S. lappa) is an important species of the Asteraceae family with several purposes in traditional medicine. This study intended to explore the cytotoxic effect of S. lappa on HepG2 cancer cell proliferation. Materials and Methods: The effects of an S. lappa n-butanol extract on the induction of apoptosis were investigated by flow cytometry and mitochondrial cytochrome C-releasing apoptosis assay. Additionally, real-time PCR was employed to confirm apoptosis initiation. Further, qualitative estimation of the active constituent of S. lappa was done by gas chromatography-mass spectroscopy (GC-MS). Results: The cell viability study revealed that the n-butanol extract of S. lappa demonstrated potent cytotoxicity against HepG2 cancer cells, with an IC50 value of 56.76 µg/mL. Cell morphology with dual staining of acridine orange (AO)-ethidium bromide (EB) showed an increase in orange/red nuclei due to cell death by S. lappa n-butanol extract compared to control cells. Apoptosis, as the mode of cell death, was also confirmed by the higher release of cytochrome C from mitochondria, the increased expression of caspase-3 and bax, along with down regulation of Bcl-2. Conclusion: These findings conclude that S. lappa is a cause of hepatic cancer cell death through apoptosis and a potential natural source suggesting furthermore investigation of its active compounds that are responsible for these observed activities.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Saussurea/química , Apoptose , Carcinoma Hepatocelular/patologia , Citocromos c/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Raízes de Plantas/químicaRESUMO
COVID-19 infection has a spectrum of variable clinical severity between populations because of their characteristic demographic features, co-morbidities, and immune system reactions. This pandemic tested the healthcare system's preparedness, which depends on predictors of severity and factors related to the duration of hospital stays. Therefore, we carried out a single-center, retrospective cohort study in a tertiary academic hospital to investigate these clinical features and predictors of severe disease and study the different factors that affect hospital stay. We utilized medical records from March 2020 to July 2021, which included 443 confirmed (positive RT-PCR) cases. The data were explained using descriptive statistics and analyzed via multivariate models. Among the patients, 65.4% were female and 34.5% were male, with a mean age of 45.7 years (SD ± 17.2). We presented seven age groups with ranges of 10 years and noticed that patients aged 30-39 years old comprised 23.02% of the records, while patients aged 70 and above comprised 10%. Nearly 47% were diagnosed as having mild, 25% as moderate, 18% as asymptomatic, and 11% as having a severe case of COVID-19 disease. Diabetes was the most common co-morbidity factor in 27.6% of patients, followed by hypertension (26.4%). Our population's predictors of severity included pneumonia, identified on a chest X-ray, and co-morbid conditions such as cardiovascular disease, stroke, ICU stay, and mechanical ventilation. The median length of hospital stay was six days. It was significantly longer in patients with a severe disease and who were administered systemic intravenous steroids. An empirical assessment of various clinical parameters could assist in effectively measuring the disease progression and follow-up with patients.
RESUMO
Natural metabolites from beneficial fungi were recognized for their potential to inhibit multidrug-resistant human and plant fungal pathogens. The present study describes the isolation, metabolite profiling, antibacterial, and antifungal, antioxidant, and anticancer activities of soil fungi. Among the 17 isolates, the AK-7 isolate was selected based on the primary screening. Further, the identification of isolate AK-7 was performed by 18S rRNA sequencing and identified as Penicillium limosum (with 99.90% similarity). Additionally, the ethyl acetate extract of the Penicillium limosum strain AK-7 (AK-7 extract) was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and a Gas Chromatography-Mass Spectroscopy (GC-MS) analysis, and the results showed different functional groups and bioactive metabolites. Consequently, a secondary screening of antibacterial activity by the agar well diffusion method showed significant antibacterial activity against Gram-negative and Gram-positive bacterial pathogens. The AK-7 extract exhibited notable antifungal activity by a food poisoning method and showed maximum inhibition of 77.84 ± 1.62%, 56.42 ± 1.27%, and 37.96 ± 1.84% against Cercospora canescens, Fusarium sambucinum and Sclerotium rolfsii phytopathogens. Consequently, the AK-7 extract showed significant antioxidant activity against DPPH and ABTSâ¢+ free radicals with IC50 values of 59.084 µg/mL and 73.36 µg/mL. Further, the anticancer activity of the AK-7 extract against the human ovarian teratocarcinoma (PA-1) cell line was tested by MTT and Annexin V flow cytometry. The results showed a dose-dependent reduction in cell viability and exhibited apoptosis with an IC50 value of 82.04 µg/mL. The study highlights the potential of the Penicillium limosum strain AK-7 as a source of active metabolites and natural antibacterial, antifungal, antioxidant, and anticancer agent, and it could be an excellent alternative for pharmaceutical and agricultural sectors.
RESUMO
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) has a poor prognosis and is one of the deadliest gastrointestinal malignancies. Despite numerous transcriptomics studies to understand its molecular basis, the impact of population-specific differences on this disease remains unexplored. AIMS: This study aimed to investigate the population-specific differences in gene expression patterns among ESCC samples obtained from six distinct global populations, identify differentially expressed genes (DEGs) and their associated pathways, and identify potential biomarkers for ESCC diagnosis and prognosis. In addition, this study deciphers population specific microbial and chemical risk factors in ESCC. METHODS: We compared the gene expression patterns of ESCC samples from six different global populations by analyzing microarray datasets. To identify DEGs, we conducted stringent quality control and employed linear modeling. We cross-compared the resulting DEG lists of each populations along with ESCC ATLAS to identify known and novel DEGs. We performed a survival analysis using The Cancer Genome Atlas Program (TCGA) data to identify potential biomarkers for ESCC diagnosis and prognosis among the novel DEGs. Finally, we performed comparative functional enrichment and toxicogenomic analysis. RESULTS: Here we report 19 genes with distinct expression patterns among populations, indicating population-specific variations in ESCC. Additionally, we discovered 166 novel DEGs, such as ENDOU, SLCO1B3, KCNS3, IFI35, among others. The survival analysis identified three novel genes (CHRM3, CREG2, H2AC6) critical for ESCC survival. Notably, our findings showed that ECM-related gene ontology terms and pathways were significantly enriched among the DEGs in ESCC. We also found population-specific variations in immune response and microbial infection-related pathways which included genes enriched for HPV, Ameobiosis, Leishmaniosis, and Human Cytomegaloviruses. Our toxicogenomic analysis identified tobacco smoking as the primary risk factor and cisplatin as the main drug chemical interacting with the maximum number of DEGs across populations. CONCLUSION: This study provides new insights into population-specific differences in gene expression patterns and their associated pathways in ESCC. Our findings suggest that changes in extracellular matrix (ECM) organization may be crucial to the development and progression of this cancer, and that environmental and genetic factors play important roles in the disease. The novel DEGs identified may serve as potential biomarkers for diagnosis, prognosis and treatment.
RESUMO
The present study aims to explore the phytochemical constitution and biological activities of Cleome felina L.f. (Cleomaceae). C. felina (leaves, stem, and root) extracts (acetone, methanol, and water) were qualitatively assessed for phytochemical presence. Methanolic leaves extract revealed more positive phyto-compounds among all the extracts; further, methanolic leaves extract was evaluated for FTIR, EDX, GCMS, antimicrobial assay, acute toxicity, and paracetamol-induced hepatoprotective activity in Wister albino rats. FTIR and EDX analysis unveiled important functional groups and elements in the leaves. GCMS analysis of methanolic leaves extract exposed 12 active phyto-compounds: major constituents detected were 1-Butanol, 3-methyl-, formate-48.79%; 1-Decanol, 2-ethyl-13.40%; 1,6-Anhydro-ß-d-talopyranose-12.49%; Ethene, 1,2-bis(methylthio)-7.22%; Decane-4.02%; 3-Methylene-7, 11-dimethyl-1-dodecene-3.085%; Amlexanox-2.50%; 1,2,3,4-Cyclopentanetetrol, (1α,2ß,3ß,4α)-2.07%; L-Cysteine S-sulfate-1.84%; n-Hexadecanoic acid-1.70%; and Flucarbazone-1.55%. The antimicrobial assay showed a moderate zone of inhibition against S. aureus, B. cereus, E. coli, P. aeruginosa, C. albicans, and C. glabrata at 100 µL/mL concentration. Additionally, acute toxicity revealed no behavioral sign of the toxic effect. The significant results were obtained for methanolic leaves extract (low-50 and high-100 mg/kg b.wt. dose) for hepatoprotective activity, where it dramatically reduced serum blood biochemical markers (AST, ALT, ALP, Total bilirubin, and cholesterol) and exhibited elevated hepatic antioxidant enzymes (SOD, CAT, and GSH) concentration with lipid peroxidation retardation. To conclude, C. felina methanolic leaves extract ameliorated important phytochemical compounds and showed significant antimicrobial and hepatoprotective efficacy; therefore, utilization of C. felina leaves suggested in pharmacological applications, and in numerous cosmetics, herbicides, and food industries, would be a great scope for future hepatoprotective drug designing.
RESUMO
The current study described the systematic and detailed extracellular synthesis method of silver nanoparticles (AgNPs) using Streptomyces hirsutus strain SNPGA-8 by green synthesis method. The AgNPs were subjected for characterizations using UV-Vis, FTIR, TGA, TEM, EDX, XRD, and zeta-potential analyses. The antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Candida albicans, Alternaria alternata, Candida glabrata and Fusarium oxysporum was determined by the agar well diffusion technique. The cytotoxicity of AgNPs against human lung cancer (A549) was studied by MTT and ROS assays and capping of proteins of AgNPs from SDS-PAGE. In the UV-Vis., absorption peak was found at 418 nm, FTIR analysis revealed the infrared bands of specific functional groups from 3273 cm-1 to 428 cm-1; TEM data confirmed the spherical shape, smallest size of particle as 18.99 nm, while EDX analysis confirmed the elemental composition of AgNPs with 22.24% Ag. The XRD pattern confirmed the nature of AgNPs as crystalline, and zeta potential peak was found at -24.6 mV indicating the higher stability. The AgNPs exhibited increased antimicrobial activity with increase in dosage volume and considerable MIC and MBC values against microbial pathogens. In the MTT cytotoxicity assay, the IC50 value of 31.41 µg/mL is obtained against A549 cell line, suggesting the potential of AgNPs to inhibit the tumour cells; and ROS assay displayed increased ROS production with increase in treatment time. Based on the results, it is evident that Streptomyces hirsutus strain SNPGA-8 AgNPs are potentially promising to be applied for biomedical uses.
RESUMO
Biosynthesis of silver nanoparticles (AgNPs) using the green matrix is an emerging trend and is considered green nanotechnology because it involves a simple, low-cost, and environmentally friendly process. The present research aimed to synthesize silver nanoparticles from a Leonotis nepetifolia (L.) R.Br. flower bud aqueous extract, characterize these nanoparticles, and perform in vitro determination of their biological applications. UV-Vis spectra were used to study the characterization of biosynthesized L. nepetifolia-flower-bud-mediated AgNPs (LnFb-AgNPs); an SPR absorption maximum at 418 nm confirmed the formation of LnFb-AgNPs. The presumed phytoconstituents subjected to reduction in the silver ions were revealed by FTIR analysis. XRD, TEM, EDS, TGA, and zeta potential with DLS analysis revealed the crystalline nature, particle size, elemental details, surface charge, thermal stability, and spherical shape, with an average size of 24.50 nm. In addition, the LnFb-AgNPs were also tested for antimicrobial activity and exhibited a moderate zone of inhibition against the selected pathogens. Concentration-dependent antioxidant activity was observed in the DPPH assay. Further, the cytotoxicity increased proportionate to the increasing concentration of the biosynthesized LnFb-AgNPs with a maximum effect at 200 µg/mL by showing the inhibition cell viability percentages and an IC50 of 35.84 µg/mL. Subsequently, the apoptotic/necrotic potential was determined using Annexin V/Propidium Iodide staining by the flow cytometry method. Significant early and late apoptosis cell populations were observed in response to the pancreatic ductal adenocarcinoma (PANC-1) cell line, as demonstrated by the obtained results. In conclusion, the study's findings suggest that the LnFb-AgNPs could serve as remedial agents in a wide range of biomedical applications.
RESUMO
Plumeria alba (P. alba) is a small laticiferous tree with promising medicinal properties. Green synthesis of nanoparticles is eco-friendly, cost-effective, and non-hazardous compared to chemical and physical synthesis methods. Current research aiming to synthesize silver nanoparticles (AgNPs) from the leaf extract of P. alba (P- AgNPs) has described its physiochemical and pharmacological properties in recognition of its therapeutic potential as an anticancer and antimicrobial agent. These biogenic synthesized P-AgNPs were physiochemically characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometry (XRD), and zeta potential analysis. Antimicrobial activity was investigated against Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Enterococcus faecalis, Bacillus subtilis, Streptococcus pneumoniae, Candida albicans, and Candida glabrata. Anticancer activity against glioblastoma U118 MG cancer lines was investigated using an MTT assay, and apoptosis activity was determined by flow cytometry. UV-visible spectroscopic analysis portrayed surface plasmon resonance at 403 nm of synthesized P-AgNPs, and FTIR suggested the presence of amines, alkanes, and phenol molecules that could be involved in reduction and capping processes during AgNPs formation. Synthesized particles were spherical in shape and poly-dispersed with an average particle size of 26.43 nm and a poly-dispersity index (PDI) of 0.25 with a zeta potential value of -24.6 mV, ensuring their stability. The lattice plane values confirm the crystalline nature as identified by XRD. These P-AgNPs exhibited potential antimicrobial activity against selected human pathogenic microbes. Additionally, the in vitro MTT assay results showed its effective anticancer activity against the glioma U118 MG cancer cell line with an IC50 value of 9.77 µg/mL AgNPs by initiating apoptosis as identified by a staining study with flow cytometric Annexin V-Fluorescein Isothiocyanate (FITC) and Propidium Iodide (PI). Thus, P. alba AgNPs can be recommended for further pharmacological and other biological research. To conclude, the current investigation developed an eco-friendly AgNPs synthesis using P. alba leaf extract with potential cytotoxic and antibacterial capacity, which can therefore be recommended as a new strategy to treat different human diseases.
RESUMO
BACKGROUND: The primary reason for poor adverse drug reaction (ADR) signal detection worldwide is the under-reporting of ADRs by healthcare professionals. Multidisciplinary teams, including pharmacists, may play an essential role in targeting this issue. AIM: The purpose of the study was to evaluate the impact of a multi-faceted educational intervention (MEI) on the knowledge, perception, and practice skills of pharmacovigilance among undergraduate pharmacy students. METHODS: A longitudinal, prospective study using a single group before-and-after intervention design was conducted among 100 undergraduate pharmacy students at Togari Veeramallappa Memorial College of Pharmacy, Ballari, India (TVMCP), affiliated to Vijayanagara Institute of Medical Sciences (VIMS), Ballari, India. The questionnaire was structured using previous studies and standardized. It had three groups of questions. Group 1 questions evaluated the knowledge (K1-K8), group 2 tested perceptions (A1-A6), and group 3 tested the practice skills of pharmacovigilance (P1-P5) of the participant. The participants were graded in 3 categories as poor, unsatisfactory, and satisfactory, depending upon the mean score. Matched pairs student t-test and The Wilcoxon Signed rank statistical test was used to assess the impact of the MEI on the participants' knowledge, perception, and practice skills score, along with recording different factors preventing them from being actively involved in the pharmacovigilance program. RESULTS: The educational intervention improved the pharmacovigilance knowledge, perception, and practice skills scores of our pharmacy students. CONCLUSION: Our study showed that knowledge, perception, and practice skills scores increased after MEI highlighting the need for regular educational campaigns to healthcare professions.
RESUMO
In India, the under-reporting of adverse drug reactions (ADRs) by health professionals is recognized as one of the leading reasons of poor ADR signal detection. The knowledge of ADRs and positive attitude of health-care professionals toward ADRs reporting is vital for decreasing the irrational use of an inappropriate pharmacy. The present study was directed to assess the knowledge, attitude, and practice (KAP) of pharmacovigilance (PV) among the physicians, nurses, and pharmacists of a teaching tertiary care hospital of India. A structured questionnaire was designed using previous studies and standardized. Questions were categorized into three groups: Group 1 tested the knowledge (K1-K8), Group 2 tested attitude (A1-A6), and Group 3 tested the level of practice of PV (P1-P5) of the participant. Such 250 questionnaires were distributed to different health-care professionals of VIMS, Ballari. The participants were graded in three categories as poor, unsatisfactory, and satisfactory depending on the mean score. The data were interpreted by calculating the frequencies, one-way ANOVA and Scheffe's test. Furthermore, factors that discourage them from taking part in the PV program were recorded. A total of 182 questionnaires were statistically analyzed. It was found that KAP of PV among doctors, nurses, and pharmacists was unsatisfactory. Our study showed that knowledge, attitude, and level of practice of PV among doctors, nurses, and pharmacists stand inadequate. Educational interventions periodically can improve these parameters of PV.
RESUMO
BACKGROUND: Cancer is a major burden and threat to global society. A wide range of chemotherapeutic agents is extensively used to treat cancer at different stages. Inappropriate drug use may also lead to the raised cost of medical care, adverse drug effects, and patient mortality. Hence, in recent years, drug utilisation studies have become a potential tool to be used in the evaluation of different health care systems including cancer. AIMS: The objectives of the study were to identify the various types of cancer, the commonly prescribed drugs, rational use of anticancer drugs, and analyse the prescribing indicators in a tertiary care government hospital of India. MATERIAL AND METHODS: Newly diagnosed cancer and/or known case of carcinoma of either sex which required treatment/on treatment with chemotherapy aged > 18 yrs admitted in Radiotherapy Department from April 2016 to September 2016 were included in the study and analysed for prescribing indicators. RESULTS: The head & neck cancers were the prevalent cancers observed with more preponderance among males. Most of the patients were prescribed with a single anticancer drug. Cisplatin was the most commonly used cytotoxic drug followed by carboplatin, and antimetabolites. The most commonly used adjuvant drugs in our study were anti-emetics and anti-peptic ulcer drugs. Over 82% of anticancer agents were taken from the essential drug list and were prescribed in generic names, indicating rational use. CONCLUSION: Over 82% of anticancer agents were taken from the essential drug list and were prescribed in generic names, indicating rational use.