Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Nanomedicine ; 36: 102419, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147665

RESUMO

In this study we produced a set of in vitro culture platforms to model vascular cell responses to growth factors and factor delivery vehicles. Two of the systems (whole vessel and whole lung vascular development) were supported by microfluidic systems facilitating media circulation and waste removal. We assessed vascular endothelial growth factor (VEGF) delivery by Pluronic F-127 hydrogel, 30 nm pore-sized microparticles (MPs), 60 nm pore-sized MP or a 50/50 mixture of 30 and 60 nm pore-sized MP. VEGF was delivered to porcine acellular lung vascular scaffolds (2.5 cm2 square pieces or whole 3D segments of acellular blood vessels) as well as whole acellular lung scaffolds. Scaffold-cell attachment was examined as was vascular tissue formation. We showed that a 50/50 mixture of 30 and 60 nm pore-sized silicon wafer MPs allowed for long-term release of VEGF within the scaffold vasculature and supported vascular endothelial tissue development during in vitro culture.


Assuntos
Portadores de Fármacos , Células Endoteliais/metabolismo , Hidrogéis , Pulmão , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular , Animais , Técnicas de Cultura de Células , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Pulmão/irrigação sanguínea , Pulmão/química , Porosidade , Suínos , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacocinética , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Virol J ; 17(1): 128, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831108

RESUMO

BACKGROUND: Heterozygosity at HLA class I loci is generally considered beneficial for host defense. We report here an element of HLA class I homozygosity that may or may not help preserve its existence in populations but which could indicate a new avenue for antiviral research. METHODS: Lymphocytes from serologically HLA-homozygous or -heterozygous donors were examined for synthesis of influenza virus proteins and RNA after exposure to virus as peripheral blood mononuclear cells. The virus-exposed lymphocytes were also examined for internalization of the virus after exposure, and for susceptibility to virus-specific cytotoxic T lymphocytes in comparison with virus-exposed monocytes/macrophages and unseparated peripheral blood mononuclear cells. Results were compared using two-tailed Fisher's exact test. RESULTS: Serologically-defined HLA-A2-homozygous lymphocytes, in contrast to heterozygous lymphocytes, did not synthesize detectable influenza virus RNA or protein after exposure to the virus. HLA-A2-homozygous lymphocytes, including both homozygous and heterozygous donors by genetic sequence subtyping, did internalize infectious virus but were not susceptible to lysis by autologous virus-specific cytotoxic T lymphocytes ("fratricide"). Similar intrinsic resistance to influenza virus infection was observed with HLA-A1- and HLA-A11-homozygous lymphocytes and with HLA-B-homozygous lymphocytes. CONCLUSIONS: A significant proportion of individuals within a population that is characterized by common expression of HLA class I alleles may possess lymphocytes that are not susceptible to influenza virus infection and thus to mutual virus-specific lysis. Further study may identify new approaches to limit influenza virus infection.


Assuntos
Genes MHC Classe I/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Macrófagos/virologia , Linfócitos T Citotóxicos/imunologia , Alelos , Feminino , Antígeno HLA-A1/imunologia , Antígeno HLA-A11/imunologia , Antígeno HLA-A2/imunologia , Homozigoto , Humanos , Leucócitos Mononucleares/virologia , Macrófagos/imunologia , Masculino
4.
J Med Virol ; 90(1): 26-33, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28856681

RESUMO

Both respiratory syncytial virus (RSV) and influenza A virus (IAV) may infect human peripheral blood mononuclear leukocytes (PBMC) during the immune response to viral challenge as the cells are recruited to the respiratory tract. The current studies demonstrated differences in PBMC responses to the two viruses very early after exposure, including reduced fos protein and CD69 expression and IL-2 production by RSV-exposed T lymphocytes. Exposure to RSV resulted in reduced lymphocyte proliferation despite evidence of a virus-specific T lymphocyte frequency equivalent to that for influenza virus. Reduced RSV-induced proliferation was not due to apoptosis, which was itself reduced relative to that of influenza virus-exposed T lymphocytes. The data indicate that differential immune responses to RSV and influenza virus are determined early after exposure of human PBMC and support the concept that the anamnestic immune response that might prevent clinically evident reinfection is attenuated very soon after exposure to RSV. Thus, candidate RSV vaccines should be expected to reduce but not prevent clinical illness upon subsequent infection by RSV. Furthermore, effective therapeutic agents for RSV are likely to be needed, especially for high-risk populations, even after vaccine development.


Assuntos
Proliferação de Células , Vírus da Influenza A/fisiologia , Ativação Linfocitária , Vírus Sincicial Respiratório Humano/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Apoptose , Humanos , Vírus da Influenza A/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Lectinas Tipo C/genética , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Vírus Sincicial Respiratório Humano/imunologia , Linfócitos T/fisiologia
5.
J Infect Dis ; 214(11): 1658-1665, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27601618

RESUMO

The current studies were undertaken to determine the susceptibility of human alveolar macrophages (AMs) to influenza A virus (IAV) infection in comparison with autologous peripheral blood-derived monocytes-macrophages (PBMs). AMs and PBMs were exposed to IAV in vitro and examined for their ability to bind and internalize IAV, and synthesize viral proteins and RNA. PBMs but not AMs demonstrated binding and internalization of the virus, synthesizing viral proteins and RNA. Exposure of AMs in the presence of a sialidase inhibitor or anti-IAV antibody resulted in viral protein synthesis by the cells. Exposure of AMs to fluorescein isothiocyanate-labeled IAV in the presence of anti-fluorescein isothiocyanate antibody also resulted in viral protein synthesis. Thus, human AMs are apparently not susceptible to direct infection by a human IAV but are likely to be infected indirectly in the setting of exposure in the presence of antibody that binds the challenging strain of IAV.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/patologia , Macrófagos Alveolares/virologia , Tropismo Viral , Internalização do Vírus , Replicação Viral , Adulto , Anticorpos Antivirais/imunologia , Células Cultivadas , Feminino , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Macrófagos Alveolares/imunologia , Masculino , Ligação Viral , Adulto Jovem
6.
J Control Release ; 358: 116-127, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120032

RESUMO

Several implantable long-acting (LA) delivery systems have been developed for sustained subcutaneous administration of tenofovir alafenamide (TAF), a potent and effective nucleotide reverse transcriptase inhibitor used for HIV pre-exposure prophylaxis (PrEP). LA platforms aim to address the lack of adherence to oral regimens, which has impaired PrEP efficacy. Despite extensive investigations in this field, tissue response to sustained subcutaneous TAF delivery remains to be elucidated as contrasting preclinical results have been reported in the literature. To this end, here we studied the local foreign body response (FBR) to sustained subdermal delivery of three forms of TAF, namely TAF free base (TAFfb), TAF fumarate salt (TAFfs), and TAFfb with urocanic acid (TAF-UA). Sustained constant drug release was achieved via titanium-silicon carbide nanofluidic implants previously shown to be bioinert. The analysis was conducted in both Sprague-Dawley (SD) rats and rhesus macaques over 1.5 and 3 months, respectively. While visual observation did not reveal abnormal adverse tissue reaction at the implantation site, histopathology and Imaging Mass Cytometry (IMC) analyses exposed a local chronic inflammatory response to TAF. In rats, UA mitigated foreign body response to TAF in a concentration-dependent manner. This was not observed in macaques where TAFfb was better tolerated than TAFfs and TAF-UA. Notably, the level of FBR was tightly correlated with local TAF tissue concentration. Further, regardless of the degree of FBR, the fibrotic capsule (FC) surrounding the implants did not interfere with drug diffusion and systemic delivery, as evidenced by TAF PK results and fluorescence recovery after photobleaching (FRAP).


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Ratos , Animais , Tenofovir , Infecções por HIV/prevenção & controle , Macaca mulatta , Ratos Sprague-Dawley , Adenina , Alanina/uso terapêutico
7.
Sci Transl Med ; 15(702): eadg2887, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379369

RESUMO

The impact of pre-exposure prophylaxis (PrEP) on slowing the global HIV epidemic hinges on effective drugs and delivery platforms. Oral drug regimens are the pillar of HIV PrEP, but variable adherence has spurred development of long-acting delivery systems with the aim of increasing PrEP access, uptake, and persistence. We have developed a long-acting subcutaneous nanofluidic implant that can be refilled transcutaneously for sustained release of the HIV drug islatravir, a nucleoside reverse transcriptase translocation inhibitor that is used for HIV PrEP. In rhesus macaques, the islatravir-eluting implants achieved constant concentrations of islatravir in plasma (median 3.14 nM) and islatravir triphosphate in peripheral blood mononuclear cells (median 0.16 picomole per 106 cells) for more than 20 months. These drug concentrations were above the established PrEP protection threshold. In two unblinded, placebo-controlled studies, islatravir-eluting implants conferred 100% protection against infection with SHIVSF162P3 after repeated low-dose rectal or vaginal challenge in male or female rhesus macaques, respectively, compared to placebo control groups. The islatravir-eluting implants were well tolerated with mild local tissue inflammation and no signs of systemic toxicity over the 20-month study period. This refillable islatravir-eluting implant has potential as a long-acting drug delivery system for HIV PrEP.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Animais , Masculino , Feminino , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Macaca mulatta , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Leucócitos Mononucleares , Sistemas de Liberação de Medicamentos
8.
J Cell Biochem ; 113(7): 2185-92, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22573544

RESUMO

Pulmonary disease is a worldwide public health problem that reduces the quality of life and increases the need for hospital admissions as well as the risk for premature death for those affected. For many patients, lung transplantation is the only chance for survival. Unfortunately, there is a significant shortage of lungs for transplantation and since the lung is the most likely organ to be damaged during procurement many lungs deemed unacceptable for transplantation are simply discarded. Rather than discarding these lungs they can be used to produce three-dimensional acellular (AC) natural lung scaffolds for the generation of engineered lung tissue. AC scaffolds are lungs whose original cells have been destroyed by exposure to detergents and physical methods of removing cells and cell debris. This creates a lung scaffold from the skeleton of the lungs themselves. The scaffolds are then used to support adult, stem or progenitor cells which can be grown into functional lung tissue. Recent studies show that engineered lung tissues are capable of surviving after in vivo transplantation and support limited gas exchange. In the future engineered lung tissue has the potential to be used in clinical applications to replace lung functions lost following injury or disease. This manuscript discusses recent advances in development and use of AC scaffolds to support engineering of lung tissues.


Assuntos
Pneumopatias/terapia , Pulmão/citologia , Pulmão/cirurgia , Engenharia Tecidual/métodos , Alicerces Teciduais , Células-Tronco Adultas/metabolismo , Animais , Matriz Extracelular/fisiologia , Humanos , Pulmão/fisiologia , Pneumopatias/patologia , Transplante de Pulmão/métodos , Ratos , Ratos Sprague-Dawley
9.
Expert Opin Drug Deliv ; 19(5): 595-610, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35588058

RESUMO

INTRODUCTION: Cell transplantation is a promising curative therapeutic strategy whereby impaired organ function can be restored without the need for whole-organ transplantation. A key challenge in allotransplantation is the requirement for life-long systemic immunosuppression to prevent rejection, which is associated with serious adverse effects such as increased risk of opportunistic infections and the development of neoplasms. This challenge underscores the urgent need for novel strategies to prevent graft rejection while abrogating toxicity-associated adverse events. AREAS COVERED: We review recent advances in immunoengineering strategies for localized immunomodulation that aim to support allograft function and provide immune tolerance in a safe and effective manner. EXPERT OPINION: Immunoengineering strategies are tailored approaches for achieving immunomodulation of the transplant microenvironment. Biomaterials can be adapted for localized and controlled release of immunomodulatory agents, decreasing the effective dose threshold and frequency of administration. The future of transplant rejection management lies in the shift from systemic to local immunomodulation with suppression of effector and activation of regulatory T cells, to promote immune tolerance.


Assuntos
Tolerância Imunológica , Terapia de Imunossupressão , Transplante de Células , Rejeição de Enxerto/prevenção & controle , Imunomodulação , Imunossupressores/uso terapêutico
10.
Mater Today Bio ; 16: 100390, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36033374

RESUMO

Local immunomodulation has shown the potential to control the immune response in a site-specific manner for wound healing, cancer, allergy, and cell transplantation, thus abrogating adverse effects associated with systemic administration of immunotherapeutics. Localized immunomodulation requires confining the biodistribution of immunotherapeutics on-site for maximal immune control and minimal systemic drug exposure. To this end, we developed a 3D-printed subcutaneous implant termed 'NICHE', consisting of a bioengineered vascularized microenvironment enabled by sustained drug delivery on-site. The NICHE was designed as a platform technology for investigating local immunomodulation in the context of cell therapeutics and cancer vaccines. Here we studied the ability of the NICHE to localize the PK and biodistribution of different model immunomodulatory agents in vivo. For this, we first performed a mechanistic evaluation of the microenvironment generated within and surrounding the NICHE, with emphasis on the parameters related to molecular transport. Second, we longitudinally studied the biodistribution of ovalbumin, cytotoxic T lymphocyte-associated antigen-4-Ig (CTLA4Ig), and IgG delivered locally via NICHE over 30 days. Third, we used our findings to develop a physiologically-based pharmacokinetic (PBPK) model. Despite dense and mature vascularization within and surrounding the NICHE, we showed sustained orders of magnitude higher molecular drug concentrations within its microenvironment as compared to systemic circulation and major organs. Further, the PBPK model was able to recapitulate the biodistribution of the 3 molecules with high accuracy (r â€‹> â€‹0.98). Overall, the NICHE and the PBPK model represent an adaptable platform for the investigation of local immunomodulation strategies for a wide range of biomedical applications.

11.
Nat Commun ; 13(1): 7951, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572684

RESUMO

Pancreatic islet transplantation efficacy for type 1 diabetes (T1D) management is limited by hypoxia-related graft attrition and need for systemic immunosuppression. To overcome these challenges, we developed the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) device, which integrates direct vascularization for facile mass transfer and localized immunosuppressant delivery for islet rejection prophylaxis. Here, we investigated NICHE efficacy for allogeneic islet transplantation and long-term diabetes reversal in an immunocompetent, male rat model. We demonstrated that allogeneic islets transplanted within pre-vascularized NICHE were engrafted, revascularized, and functional, reverting diabetes in rats for over 150 days. Notably, we confirmed that localized immunosuppression prevented islet rejection without inducing toxicity or systemic immunosuppression. Moreover, for translatability efforts, we showed NICHE biocompatibility and feasibility of deployment as well as short-term allogeneic islet engraftment in an MHC-mismatched nonhuman primate model. In sum, the NICHE holds promise as a viable approach for safe and effective islet transplantation and long-term T1D management.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Ratos , Animais , Masculino , Diabetes Mellitus Tipo 1/terapia , Terapia de Imunossupressão , Tolerância Imunológica , Imunossupressores/farmacologia , Sobrevivência de Enxerto
12.
Adv Ther (Weinh) ; 4(3)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33997267

RESUMO

Pre-exposure prophylaxis (PrEP) using antiretroviral oral drugs is effective at preventing HIV transmission when individuals adhere to the dosing regimen. Tenofovir alafenamide (TAF) is a potent antiretroviral drug, with numerous long-acting (LA) delivery systems under development to improve PrEP adherence. However, none has undergone preventive efficacy assessment. Here we show that LA TAF using a novel subcutaneous nanofluidic implant (nTAF) confers partial protection from HIV transmission. We demonstrate that sustained subcutaneous delivery through nTAF in rhesus macaques maintained tenofovir diphosphate concentration at a median of 390.00 fmol/106 peripheral blood mononuclear cells, 9 times above clinically protective levels. In a non-blinded, placebo-controlled rhesus macaque study with repeated low-dose rectal SHIVSF162P3 challenge, the nTAF cohort had a 62.50% reduction (95% CI: 1.72% to 85.69%; p=0.068) in risk of infection per exposure compared to the control. Our finding mirrors that of tenofovir disoproxil fumarate (TDF) monotherapy, where 60.00% protective efficacy was observed in macaques, and clinically, 67.00% reduction in risk with 86.00% preventive efficacy in individuals with detectable drug in the plasma. Overall, our nanofluidic technology shows potential as a subcutaneous delivery platform for long-term PrEP and provides insights for clinical implementation of LA TAF for HIV prevention.

13.
Appl Biosaf ; 25(3): 150-156, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36035759

RESUMO

Introduction: During pandemic situations like the one caused by the emergent coronavirus SARS-CoV-2, healthcare systems face the challenge of limited personal protective equipment and impaired supply chains. This problem poses a threat to healthcare workers, first responders, and the public, which demands solutions that can span the gap between institutional shortages and resupplies. Objectives: To examine the efficacy of autoclave-based decontamination for the reuse of single-use surgical masks and N95 filtering facepiece respirators (FFRs). This method is the most readily available form of decontamination in the hospital and laboratory settings. Methods: Three models of N95 FFRs and two procedural masks were evaluated in this study. A moist heat autoclave using four different autoclave cycles: 115°C for one hour, 121.1°C for 30 minutes, 130°C for two minutes, and 130°C for four minutes was used. After the autoclave process, the FFRs were NIOSH fit tested and particle counting was performed for both coarse particles of 5 micrometers (µM) and fine particles from 0.1µM to 1.0µM. Results: We observed negligible alterations in the functionality and integrity of 3M 1805 and 3M 1870/1870+ N95 FFRs after three autoclave cycles. Surgical masks also showed minimal changes in functionality and integrity. The 3M 1860 FFR failed fit test after a single autoclave decontamination cycle. Discussion and Conclusion: The study finds that specific surgical masks and N95 FFR models can withstand autoclave decontamination for up to three cycles. Additionally, the autoclave cycles tested were those that could be readily achieved by both clinical and research institutions.

14.
Adv Healthc Mater ; 9(19): e2000670, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32864893

RESUMO

The current standard for cell encapsulation platforms is enveloping cells in semipermeable membranes that physically isolate transplanted cells from the host while allowing for oxygen and nutrient diffusion. However, long-term viability and function of encapsulated cells are compromised by insufficient oxygen and nutrient supply to the graft. To address this need, a strategy to achieve enhanced vascularization of a 3D-printed, polymeric cell encapsulation platform using platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) is investigated. The study is conducted in rats and, for clinical translation relevance, in nonhuman primates (NHP). Devices filled with PRP, MSCs, or vehicle hydrogel are subcutaneously implanted in rats and NHP and the amount and maturity of penetrating blood vessels assessed via histopathological analysis. In rats, MSCs drive the strongest angiogenic response at early time points, with the highest vessel density and endothelial nitric oxide synthase (eNOS) expression. In NHP, PRP and MSCs result in similar vessel densities but incorporation of PRP ensues higher levels of eNOS expression. Overall, enrichment with PRP and MSCs yields extensive, mature vascularization of subcutaneous cell encapsulation devices. It is postulated that the individual properties of PRP and MSCs can be leveraged in a synergistic approach for maximal vascularization of cell encapsulation platforms.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Plasma Rico em Plaquetas , Animais , Encapsulamento de Células , Hidrogéis , Impressão Tridimensional , Ratos
15.
Biomaterials ; 257: 120232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768727

RESUMO

Cell encapsulation is an attractive transplantation strategy to treat endocrine disorders. Transplanted cells offer a dynamic and stimulus-responsive system that secretes therapeutics based on patient need. Despite significant advancements, a challenge in allogeneic cell encapsulation is maintaining sufficient oxygen and nutrient exchange, while providing protection from the host immune system. To this end, we developed a subcutaneously implantable dual-reservoir encapsulation system integrating in situ prevascularization and local immunosuppressant delivery, termed NICHE. NICHE structure is 3D-printed in biocompatible polyamide 2200 and comprises of independent cell and drug reservoirs separated by a nanoporous membrane for sustained local release of immunosuppressant. Here we present the development and characterization of NICHE, as well as efficacy validation for allogeneic cell transplantation in an immunocompetent rat model. We established biocompatibility and mechanical stability of NICHE. Further, NICHE vascularization was achieved with the aid of mesenchymal stem cells. Our study demonstrated sustained local elution of immunosuppressant (CTLA4Ig) into the cell reservoir protected transcutaneously-transplanted allogeneic Leydig cells from host immune destruction during a 31-day study, and reduced systemic drug exposure by 12-fold. In summary, NICHE is the first encapsulation platform achieving both in situ vascularization and immunosuppressant delivery, presenting a viable strategy for allogeneic cell transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Preparações Farmacêuticas , Animais , Encapsulamento de Células , Imunossupressores , Masculino , Ratos , Transplante Homólogo
16.
Virology ; 534: 80-86, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31220651

RESUMO

The immunopathological mechanisms as well as the role played by influenza A virus infection of human leukocytes and induction of apoptosis have not been fully elucidated. We confirm here that the percentage of cells that are infected is less than the percent of apoptotic cells. Depletion of monocytes/macrophages and depletion of cells expressing influenza neuraminidase from the cultures after exposure to virus decreased lymphocyte apoptosis. Treatment of virus-exposed leukocyte cultures with anti-neuraminidase antibodies but not with anti-hemagglutinin antibodies, reduced lymphocyte production of active caspase-3 and induction of apoptosis. Different strains of virus induced different levels of apoptosis. Variations in induction of apoptosis correlated with production and expression of viral neuraminidase by infected leukocytes. The data suggest that cell surface expression of neuraminidase plays an important role in the induction of apoptosis in human lymphocytes. The benefit, or cost, to the host of lymphocyte apoptosis warrants continued investigation.


Assuntos
Apoptose , Membrana Celular/virologia , Vírus da Influenza A/enzimologia , Influenza Humana/virologia , Linfócitos/citologia , Neuraminidase/metabolismo , Proteínas Virais/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/genética , Influenza Humana/enzimologia , Influenza Humana/genética , Influenza Humana/fisiopatologia , Linfócitos/virologia , Neuraminidase/genética , Proteínas Virais/genética
17.
Viruses ; 10(8)2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103427

RESUMO

Monocytes-macrophages and lymphocytes are recruited to the respiratory tract in response to influenza virus challenge and are exposed to the virus during the establishment of immune defenses. The susceptibility of human lymphocytes to infection was assessed. The presence of monocytes-macrophages was required to attain infection of both resting and proliferating lymphocytes. Lymphocyte infection occurred in the context of immune cell clusters and was blocked by the addition of anti-intercellular adhesion molecule-1 (ICAM-1) antibody to prevent cell clustering. Both peripheral blood-derived and bronchoalveolar lymphocytes were susceptible to infection. Both CD4⁺ and CD8⁺ T lymphocytes were susceptible to influenza virus infection, and the infected CD4⁺ and CD8⁺ lymphocytes served as infectious foci for other nonpermissive or even virus-permissive cells. These data show that monocytes-macrophages and both CD4⁺ and CD8⁺ lymphocytes can become infected during the course of an immune response to influenza virus challenge. The described leukocyte interactions during infection may play an important role in the development of effective anti-influenza responses.


Assuntos
Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Comunicação Celular/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Adulto , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Pulmão/imunologia , Pulmão/virologia , Ativação Linfocitária , Macrófagos/virologia , Masculino , Monócitos/virologia , Proteínas Virais/imunologia , Adulto Jovem
18.
Biomaterials ; 177: 125-138, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886385

RESUMO

Autologous cell transplantation holds enormous promise to restore organ and tissue functions in the treatment of various pathologies including endocrine, cardiovascular, and neurological diseases among others. Even though immune rejection is circumvented with autologous transplantation, clinical adoption remains limited due to poor cell retention and survival. Cell transplant success requires homing to vascularized environment, cell engraftment and importantly, maintenance of inherent cell function. To address this need, we developed a three dimensional (3D) printed cell encapsulation device created with polylactic acid (PLA), termed neovascularized implantable cell homing and encapsulation (NICHE). In this paper, we present the development and systematic evaluation of the NICHE in vitro, and the in vivo validation with encapsulated testosterone-secreting Leydig cells in Rag1-/- castrated mice. Enhanced subcutaneous vascularization of NICHE via platelet-rich plasma (PRP) hydrogel coating and filling was demonstrated in vivo via a chorioallantoic membrane (CAM) assay as well as in mice. After establishment of a pre-vascularized bed within the NICHE, transcutaneously transplanted Leydig cells, maintained viability and robust testosterone secretion for the duration of the study. Immunohistochemical analysis revealed extensive Leydig cell colonization in the NICHE. Furthermore, transplanted cells achieved physiologic testosterone levels in castrated mice. The promising results provide a proof of concept for the NICHE as a viable platform technology for autologous cell transplantation for the treatment of a variety of diseases.


Assuntos
Materiais Biocompatíveis/química , Células Intersticiais do Testículo/transplante , Poliésteres/química , Alicerces Teciduais/química , Animais , Sobrevivência Celular , Células Cultivadas , Células Imobilizadas/citologia , Células Imobilizadas/transplante , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ilhotas Pancreáticas/citologia , Células Intersticiais do Testículo/citologia , Masculino , Camundongos , Neovascularização Fisiológica , Impressão Tridimensional , Engenharia Tecidual
19.
Sci Transl Med ; 10(452)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068570

RESUMO

The inability to produce perfusable microvasculature networks capable of supporting tissue survival and of withstanding physiological pressures without leakage is a fundamental problem facing the field of tissue engineering. Microvasculature is critically important for production of bioengineered lung (BEL), which requires systemic circulation to support tissue survival and coordination of circulatory and respiratory systems to ensure proper gas exchange. To advance our understanding of vascularization after bioengineered organ transplantation, we produced and transplanted BEL without creation of a pulmonary artery anastomosis in a porcine model. A single pneumonectomy, performed 1 month before BEL implantation, provided the source of autologous cells used to bioengineer the organ on an acellular lung scaffold. During 30 days of bioreactor culture, we facilitated systemic vessel development using growth factor-loaded microparticles. We evaluated recipient survival, autograft (BEL) vascular and parenchymal tissue development, graft rejection, and microbiome reestablishment in autografted animals 10 hours, 2 weeks, 1 month, and 2 months after transplant. BEL became well vascularized as early as 2 weeks after transplant, and formation of alveolar tissue was observed in all animals (n = 4). There was no indication of transplant rejection. BEL continued to develop after transplant and did not require addition of exogenous growth factors to drive cell proliferation or lung and vascular tissue development. The sterile BEL was seeded and colonized by the bacterial community of the native lung.


Assuntos
Engenharia Biomédica , Transplante de Pulmão , Animais , Regulação da Expressão Gênica , Imunidade , Pulmão/crescimento & desenvolvimento , Pulmão/imunologia , Pulmão/ultraestrutura , Linfangiogênese/genética , Microbiota , Modelos Animais , Suínos , Alicerces Teciduais/química , Transcriptoma/genética
20.
J Tissue Eng Regen Med ; 11(7): 2136-2152, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26756722

RESUMO

We report, for the first time, the development of an organ culture system and protocols to support recellularization of whole acellular (AC) human paediatric lung scaffolds. The protocol for paediatric lung recellularization was developed using human transformed or immortalized cell lines and single human AC lung scaffolds. Using these surrogate cell populations, we identified cell number requirements, cell type and order of cell installations, flow rates and bioreactor management methods necessary for bioengineering whole lungs. Following the development of appropriate cell installation protocols, paediatric AC scaffolds were recellularized using primary lung alveolar epithelial cells (AECs), vascular cells and tracheal/bronchial cells isolated from discarded human adult lungs. Bioengineered paediatric lungs were shown to contain well-developed vascular, respiratory epithelial and lung tissue, with evidence of alveolar-capillary junction formation. Types I and II AECs were found thoughout the paediatric lungs. Furthermore, surfactant protein-C and -D and collagen I were produced in the bioengineered lungs, which resulted in normal lung compliance measurements. Although this is a first step in the process of developing tissues for transplantation, this study demonstrates the feasibility of producing bioengineered lungs for clinical use. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Células Epiteliais Alveolares/metabolismo , Bioprótese , Reatores Biológicos , Pulmão/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células Epiteliais Alveolares/citologia , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA