Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 135(5): 054509, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21823714

RESUMO

Rearrangements of the hydrogen bond network of liquid water are believed to involve rapid and concerted hydrogen bond switching events, during which a hydrogen bond donor molecule undergoes large angle molecular reorientation as it exchanges hydrogen bonding partners. To test this picture of hydrogen bond dynamics, we have performed ultrafast 2D IR spectral anisotropy measurements on the OH stretching vibration of HOD in D(2)O to directly track the reorientation of water molecules as they change hydrogen bonding environments. Interpretation of the experimental data is assisted by modeling drawn from molecular dynamics simulations, and we quantify the degree of molecular rotation on changing local hydrogen bonding environment using restricted rotation models. From the inertial 2D anisotropy decay, we find that water molecules initiating from a strained configuration and relaxing to a stable configuration are characterized by a distribution of angles, with an average reorientation half-angle of 10°, implying an average reorientation for a full switch of ≥20°. These results provide evidence that water hydrogen bond network connectivity switches through concerted motions involving large angle molecular reorientation.


Assuntos
Espectrofotometria Infravermelho , Água/química , Anisotropia , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho/métodos
2.
J Am Chem Soc ; 131(9): 3385-91, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19256572

RESUMO

We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.


Assuntos
Amidas/química , Proteínas/química , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho , Vibração
3.
J Phys Chem B ; 115(18): 5604-16, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21417373

RESUMO

We use temperature-dependent ultrafast infrared spectroscopy of dilute HOD in H(2)O to study the picosecond reorganization of the hydrogen bond network of liquid water. Temperature-dependent two-dimensional infrared (2D IR), pump-probe, and linear absorption measurements are self-consistently analyzed with a response function formalism that includes the effects of spectral diffusion, population lifetime, reorientational motion, and nonequilibrium heating of the local environment upon vibrational relaxation. Over the range 278-345 K, we find the time scales of spectral diffusion and reorientational relaxation decrease from approximately 2.4 to 0.7 ps and 4.6 to 1.2 ps, respectively, which corresponds to barrier heights of 3.4 and 3.7 kcal/mol, respectively. We compare the temperature dependence of the time scales to a number of measures of structural relaxation and find similar effective activation barrier heights and slightly non-Arrhenius behavior, which suggests that the reaction coordinate for the hydrogen bond rearrangement in water is collective. Frequency and orientational correlation functions computed from molecular dynamics (MD) simulations over the same temperature range support our interpretations. Finally, we find the lifetime of the OD stretch is nearly the same from 278 K to room temperature and then increases as the temperature is increased to 345 K.


Assuntos
Água/química , Deutério/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Temperatura
4.
Opt Lett ; 32(20): 2966-8, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17938668

RESUMO

Two-dimensional (2D) Fourier transform (FT) infrared spectroscopy is performed by using a collinear pulse-pair pump and probe geometry with conventional optics. Simultaneous collection of the third-order response and pulse-pair timing permit automated phasing and rapid acquisition of 2D absorptive spectra. To demonstrate the ability of this method to capture molecular dynamics, couplings and structure found in the conventional boxcar 2D FT spectroscopy, a series of 2D spectra of a metal carbonyl, and a beta-sheet protein are acquired.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA