Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400405, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007171

RESUMO

Over the past two decades, deep eutectic solvents (DESs) have captured significant attention as an emergent class of solvents that have unique properties and applications in differing fields of chemistry. One area where DES systems find utility is the design of polymeric gels, often referred to as "eutectogels," which can be prepared either using a DES to replace a traditional solvent, or where monomers form part of the DES themselves. Due to the extensive network of intramolecular interactions (e.g., hydrogen bonding) and ionic species that exist in DES systems, polymeric eutectogels often possess appealing material properties-high adhesive strength, tuneable viscosity, rapid polymerization kinetics, good conductivity, as well as high strength and flexibility. In addition, non-covalent crosslinking approaches are possible due to the inherent interactions that exist in these materials. This review considers several key applications of polymeric eutectogels, including organic electronics, wearable sensor technologies, 3D printing resins, adhesives, and a range of various biomedical applications. The design, synthesis, and properties of these eutectogels are discussed, in addition to the advantages of this synthetic approach in comparison to traditional gel design. Perspectives on the future directions of this field are also highlighted.

2.
J Sep Sci ; 45(8): 1411-1424, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35080129

RESUMO

Advances in the development of column-based analytical separations are strongly linked to the development of novel materials. Stationary phases for chromatographic separation are usually based on silica and polymer materials. Nevertheless, recent advances have been made using porous crystalline reticular materials, such as metal-organic frameworks and covalent organic frameworks. However, the direct packing of these materials is often limited due to their small crystal size and nonspherical shape. In this review, recent strategies to incorporate porous crystalline materials as stationary phases for liquid-phase separations are covered. Moreover, we discuss the potential future directions in their development and integration into suitable supports for analytical applications. Finally, we discuss the main challenges to be solved to take full advantage of these materials as stationary phases for analytical separations.


Assuntos
Cromatografia , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Polímeros/química , Porosidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA