Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 330(1): 294-303, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19332567

RESUMO

The adenosine A(2A) receptor has been implicated in the underlying biology of various neurological and psychiatric disorders, including Parkinson's disease (PD) and depression. Preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] are potent competitive antagonists of the human A(2A) receptor (K(i) = 1.1 and 0.6 nM, respectively) and have >1000-fold selectivity over all other adenosine receptors, making these compounds the most selective A(2A) receptor antagonists reported to date. Both compounds attenuate hypolocomotion induced by the A(2A) receptor agonist CGS-21680 [2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine], suggesting that they inhibit A(2A) receptor activity in vivo. Their high degree of selectivity and robust in vivo activity make preladenant and SCH 412348 useful tools to investigate the role of the A(2A) receptor system in animal models of PD and depression. Oral administration of preladenant and SCH 412348 (0.1-1 mg/kg) to rats potentiated 3,4-dihydroxy-L-phenylalanine (L-Dopa)-induced contralateral rotations after 6-hydroxydopamine lesions in the medial forebrain bundle and potently attenuated the cataleptic effects of haloperidol. Preladenant (1 mg/kg) inhibited L-Dopa-induced behavioral sensitization after repeated daily administration, which suggests a reduced risk of the development of dyskinesias. Finally, preladenant and SCH 412348 exhibited antidepressant-like profiles in models of behavioral despair, namely the mouse tail suspension test and the mouse and rat forced swim test. These studies demonstrate that preladenant and SCH 412348 are potent and selective A(2A) receptor antagonists and provide further evidence of the potential therapeutic benefits of A(2A) receptor inhibition in PD (with reduced risk of dyskinesias) and depression (one of the primary nonmotor symptoms of PD).


Assuntos
Antagonistas do Receptor A2 de Adenosina , Transtorno Depressivo/tratamento farmacológico , Modelos Animais de Doenças , Transtornos dos Movimentos/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Transtorno Depressivo/metabolismo , Humanos , Masculino , Camundongos , Transtornos dos Movimentos/metabolismo , Fármacos Neuroprotetores/química , Pirimidinas/química , Ratos , Receptor A2A de Adenosina/metabolismo , Triazóis/química
2.
Psychopharmacology (Berl) ; 179(1): 207-17, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15682298

RESUMO

RATIONALE: Modulation of metabotropic glutamate receptor (mGluR) subtypes represents a novel approach for the treatment of neurological and psychiatric disorders. OBJECTIVES: This study was conducted to investigate the role of the mGluR5 and mGluR1 subtypes in the modulation of pain and anxiety. METHODS: The mGluR5 antagonists, 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), and the mGluR1 antagonist, (4-methoxy-phenyl)-(6-methoxy-quinazolin-4-yl)-amine HCl (LY456236), were tested in models of pain [mouse formalin test, rat spinal nerve ligation (SNL)] and anxiety [Vogel conflict, conditioned lick suppression (CLS)], and their efficacious effects were compared to any associated side effects. RESULTS: The systemic administration of MPEP, MTEP, and LY456236 reduced hyperalgesia induced by formalin and mechanical allodynia following SNL. However, only LY456236 completely reversed the allodynia. In the anxiety models, MPEP (3--30 mg/kg), MTEP (3--10 mg/kg), and LY456236 (10--30 mg/kg) produced anxiolytic-like effects similar to the benzodiazepine, chlordiazepoxide (CDP, 6 mg/kg). However, only MPEP and MTEP were able to produce a level of anxiolysis comparable to CDP. In a series of tests examining potential side effects, MPEP and MTEP reduced body temperature and locomotor activity and impaired operant responding for food and rotarod performance at doses of 3--30 and 1--30 mg/kg, respectively. LY456236 reduced operant responding at 30 mg/kg. CONCLUSION: Both mGluR5 and mGluR1 antagonists are effective in models of pain and anxiety. However, an mGluR1 antagonist was more efficacious than the two mGluR5 antagonists in the pain models, which, conversely, appeared more efficacious in the anxiety models. These findings support the potential utility of mGluR5 and mGluR1 antagonists for both the treatment of chronic pain and as novel anxiolytics.


Assuntos
Analgésicos/farmacologia , Ansiolíticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Piridinas/farmacologia , Quinazolinas/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Piridinas/toxicidade , Quinazolinas/toxicidade , Ratos , Receptor de Glutamato Metabotrópico 5 , Tiazóis/toxicidade
3.
Eur J Pharmacol ; 482(1-3): 127-32, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14660013

RESUMO

A number of studies suggest the involvement of melanocortins in nociception, and although the mechanism through which this occurs is still unknown, experimental evidence would suggest an involvement of melanocortin MC(4) receptors. We investigated the effect of melanocortin receptor agonist and antagonists on nociceptive behaviour induced by formalin in the mouse. The intrathecal injection of the melanocortin receptor agonist MTII ([Ac-Nle(4),Asp(5),D-Phe(7),Lys(10)]cyclo-alpha-MSH-(4-10) amide) (5 nmol; P<0.05) significantly increased nociception in both phases of the formalin test, whereas the synthetic melanocortin receptor antagonists, SHU9119 ([Ac-Nle(4),Asp(5),D-2-Nal(7),Lys(10)]cyclo-alpha-MSH-(4-10) amide) (5 nmol), HS014 ([Ac-Cys(11),D-2-Nal(14),Cys(18)]beta-MSH-(11-22)amide) (5 nmol), and JKC-363 (cyclic [Mpr(11),D-Nal(14),Cys(18),Asp(22)-NH(2)]beta-MSH-11-22)) (5 nmol), and the endogenous receptor antagonist Agouti-related protein (AgRP) (1.5 nmol) were effective in reducing nociception in the late phase of the formalin test (50-60% of reduction in licking/flinching response; P<0.05). The present findings further support the involvement of the melanocortin system in the control of nociception. Moreover, considering that melanocortin MC(4) receptors are the only melanocortin subtype receptors present in the spinal cord, we can assume that the activity of the peptides in the formalin model is mediated through melanocortin MC(4) receptors.


Assuntos
Medição da Dor/efeitos dos fármacos , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Oligopeptídeos/farmacologia , Medição da Dor/métodos , Peptídeos Cíclicos/farmacologia , Receptores de Melanocortina/fisiologia , alfa-MSH/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA