Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120839, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599091

RESUMO

Perfluoroalkyl acids (PFAAs) are ubiquitous in nature and pose serious health risks to humans and animals. Limiting PFAA exposure requires novel technology for their effective removal from water. We investigated the efficacy of biosolid-based activated carbon (Bio-SBAC) in removing frequently detected PFAAs and their precursor fluorotelomer compounds at environmentally relevant concentrations (∼50 µg/L). Batch experiments were performed to investigate adsorption kinetics, isotherms, and leachability. Bio-SBAC achieved >95% removal of fluorotelomeric compounds, indicating that the need for PFAA removal from the environment could be minimised if the precursors were targeted. Kinetic data modelling suggested that chemisorption is the dominant PFAA adsorption mechanism. As evidenced by the isotherm modelling results, Freundlich adsorption intensity, n-1, values of <1 (0.707-0.938) indicate chemisorption. Bio-SBAC showed maximum capacities for the adsorption of perfluorooctanoic acid (1429 µg/g) and perfluorononanoic acid (1111 µg/g). Batch desorption tests with 100 mg/L humic acid and 10 g/L NaCl showed that Bio-SBAC effectively retained the adsorbed PFAA with little or no leaching, except perfluorobutanoic acid. Overall, this study revealed that Bio-SBAC is a value-added material with promising characteristics for PFAA adsorption and no leachability. Additionally, it can be incorporated into biofilters to remove PFAAs from stormwater, presenting a sustainable approach to minimise biosolid disposal and improve the quality of wastewater before discharge into receiving waters.


Assuntos
Carvão Vegetal , Fluorocarbonos , Poluentes Químicos da Água , Adsorção , Fluorocarbonos/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Caprilatos/química , Cinética
2.
J Environ Manage ; 316: 115263, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35584595

RESUMO

The toxic oxidation intermediate p-benzoquinone exists in aqueous environments at dilute concentrations above the fish-toxicity limit of 0.045 mg/L, affecting aquatic life. The reduction of this compound to the concentrations required to achieve safe discharge limits is challenging. In this study, the adsorptive removal of p-benzoquinone by a biosolid-based activated carbon (SBAC) was systematically investigated in batch experiments. The adsorption rate was rapid, and the bulk of p-benzoquinone adsorption occurred within 30 min. The maximum adsorption capacity of SBAC was estimated at 19.6 mg/g using the Langmuir isotherm model. Its adsorptivity was independent of temperature from 6 to 40 °C. The presence of 6 g/L of chloride and 500 mg/L of sulphate did not affect the removal of 1 mg/L p-benzoquinone, whereas 15 mg/L of humic acid media slightly decreased the p-benzoquinone removal from 87.0% to 83.2%. Diffusion, hydrophilic, and electrostatic interactions (i.e., dipole-dipole) govern the adsorption of p-benzoquinone and are influenced by the SBAC surface chemistry. Biosolid-based activated carbon can lower the residual p-benzoquinone to below the fish-toxicity limit of 0.045 mg/L within 1 h of sequential adsorption. Thus, biosolid-based activated carbon can effectively remove p-benzoquinone from aqueous environments; this is a waste-to-resource approach that addresses sustainability (waste disposal) and environmental protection (pollutant removal).


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Benzoquinonas , Biossólidos , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Água , Poluentes Químicos da Água/química
3.
Environ Sci Pollut Res Int ; 31(11): 16915-16927, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329667

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulating, and toxic compounds that have attracted global attention. It is challenging to reduce the residual concentrations of these compounds to safe discharge limits. In this study, batch experiments were performed to evaluate natural clinoptilolite and clinoptilolites modified (MC) with cetylpyridinium chloride (CPC-MC), didodecyldimethylammonium bromide (DDAB-MC), hexadecyltrimethylammonium bromide (HDTMA-MC), and tetramethylammonium chloride (TMA-MC) as cost-effective aqueous PFAS adsorbents. The removal capacities of the adsorbents for the majority of the PFASs decreased in the following order: DDAB-MC > CPC-MC ≫ modified natural clinoptilolite with hexadecyltrimethyl ammonium bromide (HDTMA-MC) ≫ modified natural clinoptilolite with tetramethylammonium chloride (TMA-MC) ≈ natural clinoptilolite modified with NaCl (NC). In particular, CPC-MC and DDAB-MC reduced PFASs concentration in 50 µg/L by up to 98% for perfluorooctane sulphonate. Within 30 min, CPC-MC (30.5 µg/L) and DDAB-MC (32.1 µg/L) met the PFOS water quality criterion of 36 µg/L in inland surface waters. Both adsorbents met this criterion at the highest solution volume (40 mL) and 0.125 g/L (solid-to-liquid ratio of 1:8). PFASs with short hydrocarbon chains competed more for adsorption. PFASs with sulphonate functional groups were also adsorbed more than carboxyl groups in single- and multi-PFAS solutions. The modified surfaces of clinoptilolites controlled PFAS adsorption through hydrophobic and electrostatic interactions. PFAS removal with surfactant-modified clinoptilolites is cost-effective and protects aquatic environments by using surplus natural materials.


Assuntos
Fluorocarbonos , Compostos de Amônio Quaternário , Poluentes Químicos da Água , Zeolitas , Tensoativos/química , Lipoproteínas , Adsorção , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 874: 162392, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36842579

RESUMO

Massive sewage sludge (SS) production from municipal wastewater treatment plants and the presence of numerous pollutant types render the process of SS treatment and disposal costly and complex. Here, resource recovery from SS was maximised via the optimisation of sludge-based activated carbon (SBAC) production for the removal of poly- and perfluoroalkyl substances (PFASs), while considering economic factors and minimising environmental impacts. SBAC production optimisation was realised under different operating conditions (different ZnCl2 impregnation ratios and different pyrolysis activation temperatures and durations). The sorption capacity of the optimised SBAC with respect to the removal of nine commonly detected PFASs, with environmentally relevant concentrations (∽50 µg/L), from simulated wastewater was evaluated. Economic analysis and life-cycle assessment (LCA) were also performed to determine the feasibility of the process and its potential role in the circular economy. Batch adsorption tests confirmed the high efficiency of the optimised SBACs for PFAS removal (93-100 %), highlighting the possibility of converting SS to SBAC. Economically speaking, the optimised SBAC at 1.5 M ZnCl2, 500 °C, and 0.75 h reduced total production cost by 49 %. Further, the cost could be reduced to as little as 1087 US $/metric-ton compared with that corresponding to the original conditions (2.5 M ZnCl2, 500 °C, 2 h; 2144 US $/metric-ton). LCA results also showed that freshwater ecotoxicity, marine ecotoxicity, and human non-carcinogenic toxicity were the most affected environmental impact indicators, showing a 49 % decrease when ZnCl2 impregnation ratio was reduced from 2.5 to 1.5 M. These findings highlighted the optimal conditions for the production of SBAC with high sorption capacity at a reduced cost and with reduced environmental impacts. Thus, they can serve as valuable tools for decision making regarding the selection of the most sustainable and economically feasible process for PFAS removal.


Assuntos
Fluorocarbonos , Esgotos , Humanos , Esgotos/análise , Carvão Vegetal/análise , Águas Residuárias , Indicadores Ambientais , Fluorocarbonos/análise
5.
Environ Sci Pollut Res Int ; 29(49): 74742-74755, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35641738

RESUMO

In this study, we employed batch experiments to assess the effects of citric acid on the Cu(II) removal efficiencies of seven biosolids-based adsorbents. The adsorbents used were dried biosolids (BS), biosolids biochar (BSBC), biosolids-based activated carbon (SBAC), nitric-acid-modified BSBC (BSBC-HNO3) and SBAC (SBAC-HNO3), and amine-modified BSBC (BSBC-NH2) and SBAC (SBAC-NH2). However, with 100 mM citric acid in 1 mM Cu(II) solution, only SBAC showed an increase in Cu(II) removal efficiency (64.0-93.5%). Therefore, we used SBAC for further optimisation of the adsorption process. The kinetics data, optimally described by the pseudo-second-order model, indicated that bulk Cu(II) adsorption occurred within 10 min. The highest Cu(II) removal was at pH 3, with the estimated maximum Cu(II) adsorption capacity of SBAC increasing from 0.14 to 0.30 mmol/g, with 100 mM citric acid present. This result clearly indicated the positive effect of citric acid on Cu(II) adsorption. With citric acid present, the Freundlich model optimally fitted the adsorption isotherm data, suggesting adsorption of Cu(II) in multilayers. Further investigation of Cu(II) adsorption in a sequential setup proved that SBAC could lower the residual Cu(II) in the solution to below the discharge limit (0.05 mM) in 1 h. Overall, the production of activated carbon from BS has been proven an efficient Cu(II) adsorbent for Cu-citric-acid-rich aqueous media as a simulation of real wastewaters/leachates, as well as achieving waste-to-resources goals. This is the first study to identify an adsorbent (SBAC) with increased Cu(II) adsorption capacity in the presence of excess citric acid.


Assuntos
Cobre , Poluentes Químicos da Água , Adsorção , Aminas , Biossólidos , Carvão Vegetal , Ácido Cítrico , Concentração de Íons de Hidrogênio , Cinética , Águas Residuárias
6.
Chemosphere ; 286(Pt 3): 131935, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426295

RESUMO

Cu-NH3 bearing effluents arise from electroplating and metal extraction industries, requiring innovative and sustainable Cu recovery technologies to reduce their adverse environmental impact. CO32- and Zn are often co-occurring, and thus, selective Cu recovery from these complex liquid streams is required for economic viability. This study assessed 23 sustainable biosorbents classified as tannin-rich, lignin-rich, chitosan/chitin, dead biomass, macroalgae or biochar for their Cu adsorption capacity and selectivity in a complex NH3-bearing bioleachate. Under a preliminary screen with 12 mM Cu in 1 M ammoniacal solution, most biosorbents showed optimal Cu adsorption at pH 11, with pinecone remarkably showing high removal efficiencies (up to 68%) at all tested pH values. Further refinements on select biosorbents with pH, contact time, and presence of NH3, Zn and CO32- showed again that pinecone has a high maximum adsorption capacity (1.07 mmol g-1), worked over pH 5-12 and was Cu-selective with 3.97 selectivity quotient (KCu/Zn). Importantly, pinecone performance was maintained in a real Cu/NH3/Zn/CO32- bioleachate, with 69.4% Cu removal efficiency. Unlike synthetic adsorbents, pinecones require no pre-treatment, which together with its abundance, selectivity, and efficiency without the need for prior NH3 removal, makes it a competitive and sustainable Cu biosorbent for complex Cu-NH3 bearing streams. Overall, this study demonstrated the potential of integrating bioleaching and biosorption as a clean Cu recovery technology utilizing only sustainable resources (i.e., bio-lixiviant and biosorbents). This presents a closed-loop approach to Cu extraction and recovery from wastes, thus effectively addressing elemental sustainability.


Assuntos
Cobre , Poluentes Químicos da Água , Adsorção , Biomassa , Galvanoplastia , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 353: 312-319, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29679891

RESUMO

The covalent triazine framework, CTF-1, served as host material for the in situ synthesis of Fe2O3 nanoparticles. The composite material consisted of 20 ±â€¯2 m% iron, mainly in γ-Fe2O3 phase. The resulting γ-Fe2O3@CTF-1 was examined for the adsorption of AsIII, AsV and HgII from synthetic solutions and real surface-, ground- and wastewater. The material shows excellent removal efficiencies, independent from the presence of Ca2+, Mg2+ or natural organic matter and only limited dependency on the presence of phosphate ions. Its adsorption capacity towards arsenite (198.0 mg g-1), arsenate (102.3 mg g-1) and divalent mercury (165.8 mg g-1) belongs amongst the best-known adsorbents, including many other iron-based materials. Regeneration of the adsorbent can be achieved for use over multiple cycles without a decrease in performance by elution at 70 °C with 0.1 M NaOH, followed by a stirring step in a 5 m% H2O2 solution for As or 0.1 M thiourea and 0.001 M HCl for Hg. In highly contaminated water (100 µg L-1), the adsorbent polishes the water quality to well below the current WHO limits.

8.
Int J Environ Res Public Health ; 13(1): ijerph13010062, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26703687

RESUMO

This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água/métodos , Adsorção , Arsênio/análise , Arsênio/química , Floculação , Oxirredução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA