Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473755

RESUMO

Electrospun hybrid scaffolds composed of synthetic and natural polymers have gained increasing interest in tissue engineering applications over the last decade. In this work, scaffolds composed of polylactic acid electrospun fibers, either treated (P-PLA) or non-treated (PLA) with air-plasma, were coated with high molecular weight chitosan to create a core-shell microfibrous structure. The effective thickness control of the chitosan layer was confirmed by gravimetric, spectroscopic (FTIR-ATR) and morphological (SEM) investigations. The chitosan coating increased the fiber diameter of the microfibrous scaffolds while the tensile mechanical tests, conducted in dry and wet environments, showed a reinforcing action of the coating layer on the scaffolds, in particular when deposited on P-PLA samples. The stability of the Chi coating on both PLA and P-PLA substrates was confirmed by gravimetric analysis, while their mineralization capacity was evaluated though scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) after immersing the scaffolds in simulated body fluids (SBF) at 37 °C for 1 week. Sample biocompatibility was investigated through cell viability assay and SEM analysis on mouse pre-osteoblastic MC3T3-E1 cells grown on scaffolds at different times (1, 7, 14 and 21 days). Finally, Alizarin Red assay and qPCR analysis suggested that the combination of plasma treatment and chitosan coating on PLA electrospun scaffolds influences the osteoblastic differentiation of MC3T3-E1 cells, thus demonstrating the great potential of P-PLA/chitosan hybrid scaffolds for bone tissue engineering applications.


Assuntos
Quitosana , Camundongos , Animais , Quitosana/química , Alicerces Teciduais/química , Osteogênese , Poliésteres/química
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473758

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of ß-amyloid plaques, tau tangles, neuroinflammation, and synaptic/neuronal loss, the latter being the strongest correlating factor with memory and cognitive impairment. Through an in vitro study on a neurons-astrocytes-microglia (NAM) co-culture system, we analyzed the effects of cerebrospinal fluid (CSF) samples from AD and non-AD patients (other neurodegenerative pathologies). Treatment with CSF from AD patients showed a loss of neurofilaments and spheroids, suggesting the presence of elements including CX3CL1 (soluble form), destabilizing the neurofilaments, cellular adhesion processes, and intercellular contacts. The NAM co-cultures were analyzed in immunofluorescence assays for several markers related to AD, such as through zymography, where the expression of proteolytic enzymes was quantified both in cell extracts and the co-cultures' conditioned medium (CM). Through qRT-PCR assays, several genes involved in the formation of ß-amyloid plaque, in phosphorylation of tau, and in inflammation pathways and MMP expression were investigated.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Técnicas de Cocultura , Astrócitos/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569691

RESUMO

Biomaterials are pivotal in supporting and guiding vascularization for therapeutic applications. To design effective, bioactive biomaterials, understanding the cellular and molecular processes involved in angiogenesis and vasculogenesis is crucial. Biomaterial platforms can replicate the interactions between cells, the ECM, and the signaling molecules that trigger blood vessel formation. Hydrogels, with their soft and hydrated properties resembling natural tissues, are widely utilized; particularly synthetic hydrogels, known for their bio-inertness and precise control over cell-material interactions, are utilized. Naturally derived and synthetic hydrogel bases are tailored with specific mechanical properties, controlled for biodegradation, and enhanced for cell adhesion, appropriate biochemical signaling, and architectural features that facilitate the assembly and tubulogenesis of vascular cells. This comprehensive review showcases the latest advancements in hydrogel materials and innovative design modifications aimed at effectively guiding and supporting vascularization processes. Furthermore, by leveraging this knowledge, researchers can advance biomaterial design, which will enable precise support and guidance of vascularization processes and ultimately enhance tissue functionality and therapeutic outcomes.


Assuntos
Matriz Extracelular , Hidrogéis , Hidrogéis/química , Matriz Extracelular/metabolismo , Engenharia Tecidual , Materiais Biocompatíveis/química , Adesão Celular
4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499602

RESUMO

Vibrio vulnificus is an opportunistic human pathogen causing self-limiting gastroenteritis, life-threatening necrotizing soft tissue infection, and fulminating septicaemia. An increasing rate of infections has been reported worldwide, characterized by sudden onset of sepsis and/or rapid progression to irreversible tissue damage or death. Timely intervention is essential to control the infection, and it is based on antibiotic therapy, which does not always result in the effective and rapid blocking of virulence. Inhibitors of essential virulence regulators have been reported in the last years, but none of them has been further developed, so far. We aimed to investigate whether exposure to some carbon compounds, mostly easily metabolizable, could result in transcriptional down-regulation of virulence genes. We screened various carbon sources already available for human use (thus potentially easy to be repurposed), finding some of them (including mannitol and glycerol) highly effective in down-regulating, in vitro and ex-vivo, the mRNA levels of several relevant -even essential- virulence factors (hlyU, lrp, rtxA, vvpE, vvhA, plpA, among others). This paves the way for further investigations aiming at their development as virulence inhibitors and to unveil mechanisms explaining such observed effects. Moreover, data suggesting the existence of additional regulatory networks of some virulence genes are reported.


Assuntos
Vibrioses , Vibrio vulnificus , Humanos , Vibrio vulnificus/genética , Carbono/farmacologia , Proteínas de Bactérias/metabolismo , Virulência/genética , Fatores de Virulência/metabolismo
5.
Int J Mol Sci ; 21(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806778

RESUMO

Cartilage is an avascular tissue with limited ability of self-repair. The use of autologous chondrocyte transplants represent an effective strategy for cell regeneration; however, preserving the differentiated state, which ensures the ability to regenerate damaged cartilage, represents the main challenge during in vitro culturing. For this purpose, we produced an injectable marine collagen-based hydrogel, by mixing native collagen from the jellyfish Rhizostoma pulmo with hydroxy-phenyl-propionic acid (HPA)-functionalized marine gelatin. This biocompatible hydrogel formulation, due to the ability of enzymatically reticulate using horseradish peroxidase (HPR) and H2O2, gives the possibility of trap cells inside, in the absence of cytotoxic effects, during the cross-linking process. Moreover, it enables the modulation of the hydrogel stiffness merely varying the concentration of H2O2 without changes in the concentration of polymer precursors. The maintenance of differentiated chondrocytes in culture was then evaluated via morphological analysis of cell phenotype, GAG production and cytoskeleton organization. Additionally, gene expression profiling of differentiation/dedifferentiation markers provided evidence for the promotion of the chondrogenic gene expression program. This, combined with the biochemical properties of marine collagen, represents a promising strategy for maintaining in vitro the cellular phenotype in the aim of the use of autologous chondrocytes in regenerative medicine practices.


Assuntos
Organismos Aquáticos/química , Diferenciação Celular , Condrócitos/citologia , Colágeno/farmacologia , Hidrogéis/farmacologia , Injeções , Engenharia Tecidual/métodos , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Camundongos , Ratos , Cifozoários/química
6.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052191

RESUMO

Tubulins and microtubules (MTs) represent targets for taxane-based chemotherapy. To date, several lines of evidence suggest that effectiveness of compounds binding tubulin often relies on different post-translational modifications on tubulins. Among them, methylation was recently associated to drug resistance mechanisms impairing taxanes binding. The sea urchin is recognized as a research model in several fields including fertilization, embryo development and toxicology. To date, some α- and ß-tubulin genes have been identified in P. lividus, while no data are available in echinoderms for arginine methyl transferases (PRMT). To evaluate the exploiting of the sea urchin embryo in the field of antiproliferative drug development, we carried out a survey of the expressed α- and ß-tubulin gene sets, together with a comprehensive analysis of the PRMT gene family and of the methylable arginine residues in P. lividus tubulins. Because of their specificities, the sea urchin embryo may represent an interesting tool for dissecting mechanisms of tubulin targeting drug action. Therefore, results herein reported provide evidences supporting the P. lividus embryo as animal system for testing antiproliferative drugs.


Assuntos
Citostáticos/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Ouriços-do-Mar/efeitos dos fármacos , Testes de Toxicidade/métodos , Moduladores de Tubulina/toxicidade , Tubulina (Proteína)/metabolismo , Animais , Embrião não Mamífero/efeitos dos fármacos , Metilação , Processamento de Proteína Pós-Traducional , Ouriços-do-Mar/embriologia
7.
Mar Drugs ; 16(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366463

RESUMO

Blue biotechnologies implement marine bio-resources for addressing practical concerns. The isolation of biologically active molecules from marine animals is one of the main ways this field develops. Strikingly, cnidaria are considered as sustainable resources for this purpose, as they possess unique cells for attack and protection, producing an articulated cocktail of bioactive substances. The Mediterranean sea anemone Anemonia viridis has been studied extensively for years. In this short review, we summarize advances in bioprospecting of the A. viridis toxin arsenal. A. viridis RNA datasets and toxin data mining approaches are briefly described. Analysis reveals the major pool of neurotoxins of A. viridis, which are particularly active on sodium and potassium channels. This review therefore integrates progress in both RNA-Seq based and biochemical-based bioprospecting of A. viridis toxins for biotechnological exploitation.


Assuntos
Venenos de Cnidários/química , Venenos de Cnidários/genética , Toxinas Marinhas/química , Neurotoxinas/química , Neurotoxinas/genética , Anêmonas-do-Mar/química , Anêmonas-do-Mar/genética , Animais , Venenos de Cnidários/isolamento & purificação , Venenos de Cnidários/farmacologia , Mineração de Dados , Toxinas Marinhas/genética , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/farmacologia , Neurotoxinas/isolamento & purificação , Neurotoxinas/farmacologia , RNA/química , RNA/genética , Análise de Sequência de RNA , Pesquisa Translacional Biomédica
8.
Fish Shellfish Immunol ; 67: 86-94, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28579525

RESUMO

Gene family encoding allograft inflammatory factor-1 (AIF-1) is well conserved among organisms; however, there is limited knowledge in lower organisms. In this study, the first AIF-1 homologue from cnidarians was identified and characterised in the sea anemone Anemonia viridis. The full-length cDNA of AvAIF-1 was of 913 bp with a 5' -untranslated region (UTR) of 148 bp, a 3'-UTR of 315 and an open reading frame (ORF) of 450 bp encoding a polypeptide with149 amino acid residues and predicted molecular weight of about 17 kDa. The predicted protein possesses evolutionary conserved EF hand Ca2+ binding motifs, post-transcriptional modification sites and a 3D structure which can be superimposed with human members of AIF-1 family. The AvAIF-1 transcript was constitutively expressed in all tested tissues of unchallenged sea anemone, suggesting that AvAIF-1 could serve as a general protective factor under normal physiological conditions. Moreover, we profiled the transcriptional activation of AvAIF-1 after challenges with different abiotic/biotic stresses showing induction by warming conditions, heavy metals exposure and immune stimulation. Thus, mechanisms associated to inflammation and immune challenges up-regulated AvAIF-1 mRNA levels. Our results suggest its involvement in the inflammatory processes and immune response of A. viridis.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/química , Evolução Molecular , Filogenia , Anêmonas-do-Mar/classificação , Alinhamento de Sequência
9.
Int J Mol Sci ; 18(4)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28417916

RESUMO

Metallothioneins (MT) are small and cysteine-rich proteins that bind metal ions such as zinc, copper, cadmium, and nickel. In order to shed some light on MT gene structure and evolution, we cloned seven Paracentrotus lividus MT genes, comparing them to Echinodermata and Chordata genes. Moreover, we performed a phylogenetic analysis of 32 MTs from different classes of echinoderms and 13 MTs from the most ancient chordates, highlighting the relationships between them. Since MTs have multiple roles in the cells, we performed RT-qPCR and in situ hybridization experiments to understand better MT functions in sea urchin embryos. Results showed that the expression of MTs is regulated throughout development in a cell type-specific manner and in response to various metals. The MT7 transcript is expressed in all tissues, especially in the stomach and in the intestine of the larva, but it is less metal-responsive. In contrast, MT8 is ectodermic and rises only at relatively high metal doses. MT5 and MT6 expression is highly stimulated by metals in the mesenchyme cells. Our results suggest that the P. lividus MT family originated after the speciation events by gene duplications, evolving developmental and environmental sub-functionalization.


Assuntos
Metalotioneína/genética , Família Multigênica , Paracentrotus/classificação , Paracentrotus/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Desenvolvimento Embrionário/genética , Éxons , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ordem dos Genes , Metalotioneína/química , Metais/farmacologia , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
10.
Mar Drugs ; 11(11): 4213-31, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24177670

RESUMO

Anemonia viridis is a widespread and extensively studied Mediterranean species of sea anemone from which a large number of polypeptide toxins, such as blood depressing substances (BDS) peptides, have been isolated. The first members of this class, BDS-1 and BDS-2, are polypeptides belonging to the ß-defensin fold family and were initially described for their antihypertensive and antiviral activities. BDS-1 and BDS-2 are 43 amino acid peptides characterised by three disulfide bonds that act as neurotoxins affecting Kv3.1, Kv3.2 and Kv3.4 channel gating kinetics. In addition, BDS-1 inactivates the Nav1.7 and Nav1.3 channels. The development of a large dataset of A. viridis expressed sequence tags (ESTs) and the identification of 13 putative BDS-like cDNA sequences has attracted interest, especially as scientific and diagnostic tools. A comparison of BDS cDNA sequences showed that the untranslated regions are more conserved than the protein-coding regions. Moreover, the KA/KS ratios calculated for all pairwise comparisons showed values greater than 1, suggesting mechanisms of accelerated evolution. The structures of the BDS homologs were predicted by molecular modelling. All toxins possess similar 3D structures that consist of a triple-stranded antiparallel ß-sheet and an additional small antiparallel ß-sheet located downstream of the cleavage/maturation site; however, the orientation of the triple-stranded ß-sheet appears to differ among the toxins. To characterise the spatial expression profile of the putative BDS cDNA sequences, tissue-specific cDNA libraries, enriched for BDS transcripts, were constructed. In addition, the proper amplification of ectodermal or endodermal markers ensured the tissue specificity of each library. Sequencing randomly selected clones from each library revealed ectodermal-specific expression of ten BDS transcripts, while transcripts of BDS-8, BDS-13, BDS-14 and BDS-15 failed to be retrieved, likely due to under-representation in our cDNA libraries. The calculation of the relative abundance of BDS transcripts in the cDNA libraries revealed that BDS-1, BDS-3, BDS-4, BDS-5 and BDS-6 are the most represented transcripts.


Assuntos
DNA Complementar/genética , Expressão Gênica/genética , Toxinas Marinhas/genética , Peptídeos/genética , Anêmonas-do-Mar/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Ectoderma/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
11.
Int J Pharm ; 645: 123409, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722496

RESUMO

Fluorescent sulfur- and nitrogen-doped carbon nanodots (CDs) are zero-dimensional nanoparticles that mediate ROS production in cancer cells, displaying inherent anticancer properties. Thus, they have been proposed as nanotheranostic tools useful in image-guided cancer therapy. Here, we try to show that cancerous cells (high PDE-5 expression) receiving sildenafil delivered by CDs-based nanostructures promote positive reinforcement of PDE-5-mediated cell death via the overexpression of genes involved in the production of ROS. We explored the regioselective Huisgen cycloaddition between azide-ß-cyclodextrin and CDs-alkyne to synthetize homogeneous nanostructures, named CDs-PEG4-ß-Cdx, consisting of CDs functionalized at the surface with ß-cyclodextrins capable of including high amount drugs such as sildenafil (>20 % w/w), and releasing them in a controlled manner. We investigated how CDs-PEG4-ß-Cdx bearing sildenafil enter cells, enhancing ROS production and cell death specifically in cancer cells overexpressing PDE-5. These nanoplatforms go beyond the bounds of EPR-based nanomedicines in which carriers are conceived as inert vehicles of toxic drugs. Our findings enable the development of clever anticancer nanoplatforms that synergistically combine nanomedicines that perturb the mitochondrial electron transport chain (ROS production) with PDE-5 inhibitors which trigger oxidative stress specifically in cancer cells regardless of their location.


Assuntos
Neoplasias , beta-Ciclodextrinas , Humanos , Citrato de Sildenafila , Espécies Reativas de Oxigênio/metabolismo , Carbono/química , beta-Ciclodextrinas/química , Enxofre/química
12.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37082140

RESUMO

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

13.
Life (Basel) ; 12(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36013323

RESUMO

Tissue inhibitors of metalloproteases (TIMPs) belong to a fascinating protein family expressed in all Metazoa. They act as regulators of the turnover of the extracellular matrix, and they are consistently involved in essential processes. Herein, we recapitulate the main activities of mammalian TIMPs (TIMP1-4) in the control of extracellular-matrix degradation and pathologies associated with aberrant proteostasis. We delineate the activity of TIMPs in the control of extracellular matrix (ECM) homeostasis and discuss the diversity of TIMPs across metazoans taking into account the emergence of the components of the ECM during evolution. Thus, the TIMP repertoire herein analysed includes the homologues from cnidarians, which are coeval with the origins of ECM components; protostomes (molluscs, arthropods and nematodes); and deuterostomes (echinoderms and vertebrates). Several questions, including the maintenance of the structure despite low sequence similarity and the strategies for TIMP engineering, shed light on the possibility to use recombinant TIMPs integrating unique features and binding selectivity for therapeutic applications in the treatment of inflammatory pathologies.

14.
Proteomes ; 10(3)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35893766

RESUMO

Chondrosarcoma is the second most common bone tumor, accounting for 20% of all cases. Little is known about the pathology and molecular mechanisms involved in the development and in the metastatic process of chondrosarcoma. As a consequence, there are no approved therapies for this tumor and surgical resection is the only treatment currently available. Moreover, there are no available biomarkers for this type of tumor, and chondrosarcoma classification relies on operator-dependent histopathological assessment. Reliable biomarkers of chondrosarcoma are urgently needed, as well as greater understanding of the molecular mechanisms of its development for translational purposes. Hypoxia is a central feature of chondrosarcoma progression. The hypoxic tumor microenvironment of chondrosarcoma triggers a number of cellular events, culminating in increased invasiveness and migratory capability. Herein, we analyzed the effects of chemically-induced hypoxia on the secretome of SW 1353, a human chondrosarcoma cell line, using high-resolution quantitative proteomics. We found that hypoxia induced unconventional protein secretion and the release of proteins associated to exosomes. Among these proteins, which may be used to monitor chondrosarcoma development, we validated the increased secretion in response to hypoxia of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme well-known for its different functional roles in a wide range of tumors. In conclusion, by analyzing the changes induced by hypoxia in the secretome of chondrosarcoma cells, we identified molecular mechanisms that can play a role in chondrosarcoma progression and pinpointed proteins, including GAPDH, that may be developed as potential biomarkers for the diagnosis and therapeutic management of chondrosarcoma.

15.
Chemosphere ; 309(Pt 1): 136720, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206916

RESUMO

Microplastics (MPs) in the marine environment undergo complex weathering factors that can affect their ability to interact with different coexisting environmental contaminants (termed here co-contaminants). In this study, the influence of artificially aging using UV on the sorption of a complex mixture of co-contaminants onto MPs was investigated in order to provide meaningful hypotheses on their individual and combined toxicities on sea urchin embryos. A mixture of artificially aged MPs (PS particles and PA microfibers) combined with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or Cd or Cu, both alone and in a mix, were used to expose embryos of Paracentrotus lividus. The effects of polymer aging on co-contaminants bioavailability were assessed by measuring changes in the transcriptional profile of genes involved in oxidative-stress response and skeletogenic and endo-mesodermal specification. Changes in the sorption ability of MPs to co-contaminants in the aqueous phase highlighted that aging did not affect the sorption of BDE-47 and Cd on MPs, although a certain influence on Cu sorption was found. Despite no morphological effects in embryos at the gastrula stage after MPs/contaminants combinatorial exposure emerged, the greatest influence of the aging process was mainly found for combined exposures which included BDE-47. Finally, the exposure to multiple contaminants generated transcriptional profiles poorly related to those activated by single contaminant, at times suggesting a mixture-dependent different aging influence. These results open new scenarios on the controversial role of vector of co-contaminants for MPs, especially when complex and different types of mixtures were considered.


Assuntos
Microplásticos , Paracentrotus , Animais , Plásticos , Polímeros , Disponibilidade Biológica , Cádmio , Misturas Complexas
16.
Biomedicines ; 9(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199087

RESUMO

Adipose derived microvascular fragments (ad-MVFs) consist of effective vascularization units able to reassemble into efficient microvascular networks. Because of their content in stem cells and related angiogenic activity, ad-MVFs represent an interesting tool for applications in regenerative medicine. Here we show that gentle dissociation of rat adipose tissue provides a mixture of ad-MVFs with a length distribution ranging from 33-955 µm that are able to maintain their original morphology. The isolated units of ad-MVFs that resulted were able to activate transcriptional switching toward angiogenesis, forming tubes, branches, and entire capillary networks when cultured in 3D collagen type-I hydrogel. The proper involvement of metalloproteases (MMP2/MMP9) and serine proteases in basal lamina and extracellular matrix ECM degradation during the angiogenesis were concurrently assessed by the evaluation of alpha-smooth muscle actin (αSMA) expression. These results suggest that collagen type-I hydrogel provides an adequate 3D environment supporting the activation of the vascularization process. As a proof of concept, we exploited 3D collagen hydrogel for the setting of ad-MVF-islet of Langerhans coculture to improve the islets vascularization. Our results suggest potential employment of the proposed in vitro system for regenerative medicine applications, such as the improving of the islet of Langerhans engraftment before transplantation.

17.
Carbohydr Polym ; 267: 118213, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119168

RESUMO

We propose a rational design of hyaluronic acid-dressed red-emissive carbon dots (CDs), with a well-structured hydrophobic core capable of locally delivering high amount doxorubicin (Doxo) (> 9% w/w) and heat (hyperthermia) in a light stimuli sensitive fashion. We combined in a unique micelle-like superstructure the peculiar optical properties of CDs (NIR photothermal conversion and red fluorescence) with the ability of hyaluronic acid (HA) shell of stabilizing nanomedicines in aqueous environment and recognizing cancer cells overexpressing CD44 receptors on their membranes, thus giving rise to smart theranostic agents useful in cancer imaging and NIR-triggered chemo-phototherapy of solid tumors. Hydrophobic CDs, named HCDs, were used as functional beads to self-assemble amphiphilic HA derivatives carrying polylactic acid side chains (HA-g-PLA), yielding to light-sensitive and biodegradable core-shell superstructures. We explored the biocompatibility and synergistic effects of chemo-phototherapy combination, together with fluorescence imaging, showing the huge potential of the proposed engineering strategy in improving efficacy. CHEMICAL COMPOUNDS.

18.
Biology (Basel) ; 10(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535713

RESUMO

It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F0, high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F1), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.

19.
Mar Environ Res ; 169: 105379, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119918

RESUMO

Cyclothone braueri (Stomiiformes, Gonostomatidae) is a widely distributed fish inhabiting the mesopelagic zone of marine tropical and temperate waters. Constituting one of the largest biomasses of the ocean, C. braueri is a key element in most of the ecological processes occurring in the twilight layer. We focused on the ecological processes linked to early life stages in relation to marine pelagic environmental drivers (temperature, salinity, food availability and geostrophic currents) considering different regions of the Central Mediterranean Sea. A multivariate morphometric analysis was carried out using six parameters with the aim of discerning different larval morphotypes, while a fragment of 367 bp representing the 12S ribosomal RNA gene was used to perform molecular analyses aimed at determining the intraspecific genetic variability. Analysis highlighted two geographically distinct morphotypes not genetically discernible and related to the different nutritional conditions due to spatial heterogeneities in terms of temperature and food availability. The body depth (BD) emerged as an appropriate morphometric parameter to detect the larval condition in this species. Molecular analysis highlighted a moderate genetic divergence in the fish population, showing the recurrence of two phylogroups not geographically separated.


Assuntos
Cilióforos , Peixes , Animais , Estruturas Genéticas , Larva/genética , Mar Mediterrâneo
20.
Biomed Chromatogr ; 24(12): 1263-4, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21117284

RESUMO

Silica-based columns are largely used in RNA purification, allowing fast extractions and good yields of high quality nucleic acid, but their major limitation is the high cost. The reuse of such columns, although desirable, is not recommended because of residual amounts of material from the previous sample trapped in the column matrix, which might be released during further purification. Thus, recycling does need previous complete removal of any detectable RNA trace, but to date no protocol which allows decontamination and reuse is available.We report a very rapid decontamination procedure, based on treatment with warm alkaline solution containing Triton X-100, which ensures no RNA carry-over, and allows the recycling of columns without impairment of their efficiency in high-quality RNA purification even after several regeneration rounds.


Assuntos
Cromatografia/instrumentação , Descontaminação/métodos , RNA/isolamento & purificação , Reciclagem/métodos , Dióxido de Silício/química , Álcalis/química , Cromatografia/métodos , Octoxinol/química , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA