Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35207047

RESUMO

The application of graphene oxide (GO)-based membranes combined with a quartz crystal microbalance (QCM) as a humidity sensor has attracted great interest over the past few years. Understanding the influence of the structure of the GO membrane (GOM) on the adsorption/desorption of water molecules and the transport mechanism of water molecules in the membrane is crucial for development of applications using GOM-based humidity sensors. In this paper, by investigating the effects of oxygen-containing groups, flake size and interlayer spacing on the performance of humidity sensing, it was found that humidity-sensing performance could be improved by rational membrane-structure design and the introduction of magnesium ions, which can expand the interlayer spacing. Therefore, a novel HGO&GO&Mg2+ structure prepared by uniformly doping magnesium ions into GO&HGO thin composite membranes was designed for humidity sensing from 11.3% RH to 97.3% RH. The corresponding sensor exhibits a greatly improved humidity sensitivity (~34.3 Hz/%RH) compared with the original pure GO-based QCM sensor (~4.0 Hz/%RH). In addition, the sensor exhibits rapid response/recovery times (7 s/6 s), low hysteresis (~3.2%), excellent repeatability and good stability. This research is conducive to understanding the mechanism of GOM-based humidity sensors. Owing to its good humidity-sensing properties, the HGO&GO&Mg2+ membrane-based QCM humidity sensor is a good candidate for humidity sensing.

2.
ACS Nano ; 16(2): 2046-2053, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35137582

RESUMO

The discovery of specific matter phases with abnormal physical properties in low-dimensional systems and/or on particular substrates, such as the hexagonal phase of ice and two-dimensional (2D) CaCl with an abnormal valence state, continuously reveals more fundamental mechanisms of the nature. Alkali halides, represented by NaCl, are one of the most common compounds and usually thought to be well-understood. In the past decades, many theoretical studies suggested the existence of one particular phase, that is, the graphitic-like hexagonal phase of alkali halides at high pressure or in low-dimension states, with the expectation of improved properties of this matter phase but lacking experimental evidence due to severe technical challenges. Here, by optimized cryo-electron microscopy, we report the direct atomic-resolution observation and in situ characterization of the prevalent and stable graphitic-like alkali halide hexagonal phases, which were spontaneously formed by unsaturated NaCl and LiCl solution, respectively, in the quasi-2D confined space between reduced graphene oxide layers under ambient conditions. Combined with a control experiment, density functional theory calculations, and previous theoretical studies, we believe that a delicate balance among the cation-π interaction of the solute and substrate, electrostatic interactions of anions and cations, solute-solvent interactions, and thermodynamics under confinement synergistically results in the formation of such hexagonal crystalline phases. These findings highlight the effects of the substrate and the confined space on the formation of specific matter phases and provide a universal scheme for the preparation of special graphitic-like hexagonal phases of alkali halides.

3.
iScience ; 25(12): 105472, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36404919

RESUMO

The preparation technology of unconventional low-dimensional Cu2O monocrystals, which exhibit specific crystal planes and present significantly unique interfacial and physicochemical properties, is attracting increasing attention and interest. Herein, by integrating a high-temperature oxidation process under vacuum and a pure-water incubation process under ambient conditions, we propose the self-assembled growth and synthesis of quasi-two-dimensional Cu2O monocrystals on reduced graphene oxide (rGO) membranes. The prepared Cu2O crystals have a single (110) crystal plane, regular rectangular morphology, and potentially well conductivity. Experimental and theoretical results suggest that this assembly is attributed to the pre-nucleation clusters aggregation and directional attachment of Cu and O on the rGO membranes in aqueous environment and cation-π interactions between the (110) crystal plane of Cu2O and rGO surface. Our findings offer a potential avenue for the discovery and design of advanced low-dimensional single-crystal materials with specific interfacial properties in a pure aqueous environment.

4.
Materials (Basel) ; 14(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924807

RESUMO

Graphene oxide has been widely used in the oxidative degradation of environmental pollutants. However, its catalytic role can be questioned as graphene oxide with oxygen-containing functional groups may also act as reactant in oxidative reactions. Herein, hydrogel composites loaded with multilayered graphene platelets showed excellent catalytic performance for the reduction of a wastewater organic pollutant (methylene blue) under NaBH4, which proved the catalytic role of multilayered graphene platelets. The liquid-based direct exfoliation method was used to prepare two-dimensional materials, which is compatible with other liquid phase methods to prepare nanomaterials. Hydrogel composites composed of multilayered graphene platelets, silver nanoparticles, and polyacrylic acid hydrogels were synthesized in water solution under irradiation with ultraviolet light, demonstrating the advantages of synthesizing nanocomposites using the liquid-based direct exfoliation method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA