RESUMO
The activity of a border ownership selective (BOS) neuron indicates where a foreground object is located relative to its (classical) receptive field (RF). A population of BOS neurons thus provides an important component of perceptual grouping, the organization of the visual scene into objects. In previous theoretical work, it has been suggested that this grouping mechanism is implemented by a population of dedicated grouping ("G") cells that integrate the activity of the distributed feature cells representing an object and, by feedback, modulate the same cells, thus making them border ownership selective. The feedback modulation by G cells is thought to also provide the mechanism for object-based attention. A recent modeling study showed that modulatory common feedback, implemented by synapses with N-methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally observed synchrony in spike trains of BOS neurons and the shape of cross-correlations between them, including its dependence on the attentional state. However, that study was limited to pairs of BOS neurons with consistent border ownership preferences, defined as two neurons tuned to respond to the same visual object, in which attention decreases synchrony. But attention has also been shown to increase synchrony in neurons with inconsistent border ownership selectivity. Here we extend the computational model from the previous study to fully understand these effects of attention. We postulate the existence of a second type of G-cell that represents spatial attention by modulating the activity of all BOS cells in a spatially defined area. Simulations of this model show that a combination of spatial and object-based mechanisms fully accounts for the observed pattern of synchrony between BOS neurons. Our results suggest that modulatory feedback from G-cells may underlie both spatial and object-based attention.
Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Córtex Visual , Animais , Atenção/fisiologia , Biologia Computacional , Haplorrinos , Humanos , Córtex Visual/citologia , Córtex Visual/fisiologiaRESUMO
A person's decisions vary even when options stay the same, like when a gambler changes bets despite constant odds of winning. Internal bias (e.g., emotion) contributes to this variability and is shaped by past outcomes, yet its neurobiology during decision-making is not well understood. To map neural circuits encoding bias, we administered a gambling task to 10 participants implanted with intracerebral depth electrodes in cortical and subcortical structures. We predicted the variability in betting behavior within and across patients by individual bias, which is estimated through a dynamical model of choice. Our analysis further revealed that high-frequency activity increased in the right hemisphere when participants were biased toward risky bets, while it increased in the left hemisphere when participants were biased away from risky bets. Our findings provide electrophysiological evidence that risk-taking bias is a lateralized push-pull neural system governing counterintuitive and highly variable decision-making in humans.
Assuntos
Córtex Cerebral/fisiologia , Adulto , Viés , Mapeamento Encefálico/métodos , Tomada de Decisões , Feminino , Jogo de Azar/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Assunção de RiscosRESUMO
A key question in decision-making is how people integrate amounts and probabilities to form preferences between risky alternatives. Here we rely on the general principle of integration-to-boundary to develop several biologically plausible process models of risky-choice, which account for both choices and response-times. These models allowed us to contrast two influential competing theories: i) within-alternative evaluations, based on multiplicative interaction between amounts and probabilities, ii) within-attribute comparisons across alternatives. To constrain the preference formation process, we monitored eye-fixations during decisions between pairs of simple lotteries, designed to systematically span the decision-space. The behavioral results indicate that the participants' eye-scanning patterns were associated with risk-preferences and expected-value maximization. Crucially, model comparisons showed that within-alternative process models decisively outperformed within-attribute ones, in accounting for choices and response-times. These findings elucidate the psychological processes underlying preference formation when making risky-choices, and suggest that compensatory, within-alternative integration is an adaptive mechanism employed in human decision-making.
Assuntos
Comportamento de Escolha , Tomada de Decisões , Assunção de Riscos , Adulto , Biologia Computacional , Teoria da Decisão , Feminino , Fixação Ocular , Humanos , Masculino , Modelos Psicológicos , Recompensa , Adulto JovemRESUMO
Visual processing of objects makes use of both feedforward and feedback streams of information. However, the nature of feedback signals is largely unknown, as is the identity of the neuronal populations in lower visual areas that receive them. Here, we develop a recurrent neural model to address these questions in the context of contour integration and figure-ground segregation. A key feature of our model is the use of grouping neurons whose activity represents tentative objects ("proto-objects") based on the integration of local feature information. Grouping neurons receive input from an organized set of local feature neurons, and project modulatory feedback to those same neurons. Additionally, inhibition at both the local feature level and the object representation level biases the interpretation of the visual scene in agreement with principles from Gestalt psychology. Our model explains several sets of neurophysiological results (Zhou et al. Journal of Neuroscience, 20(17), 6594-6611 2000; Qiu et al. Nature Neuroscience, 10(11), 1492-1499 2007; Chen et al. Neuron, 82(3), 682-694 2014), and makes testable predictions about the influence of neuronal feedback and attentional selection on neural responses across different visual areas. Our model also provides a framework for understanding how object-based attention is able to select both objects and the features associated with them.
Assuntos
Atenção/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Retroalimentação Fisiológica/fisiologia , Humanos , Estimulação LuminosaRESUMO
Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.
Assuntos
Retroalimentação Fisiológica/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Inibição Neural/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Humanos , Rede Nervosa/fisiologia , Redes Neurais de ComputaçãoRESUMO
Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (r(sc)) are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1) whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2) the interplay between spike-synchrony and rsc during feature selection, and (3) whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency) and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased r(sc) when attention was directed towards the visual modality (i.e., away from touch). These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the relevant features of sensory stimuli.
Assuntos
Atenção/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação , Animais , Macaca mulatta , Masculino , Análise de Célula ÚnicaRESUMO
The standard architecture of neocortex is a network with excitation and inhibition in closely maintained balance. These networks respond fast and with high precision to their inputs and they allow selective amplification of patterned signals. The stability of such networks is known to depend on balancing the strengths of positive and negative feedback. We here show that a second condition is required for stability which depends on the relative strengths and time courses of fast (AMPA) and slow (NMDA) currents in the excitatory projections. This condition also determines the response time of the network. We show that networks which respond quickly to an input are necessarily close to an oscillatory instability which resonates in the delta range. This instability explains the existence of neocortical delta oscillations and the emergence of absence epilepsy. Although cortical delta oscillations are a network-level phenomenon, we show that in non-pathological networks, individual neurons receive sufficient information to keep the network in the fast-response regime without sliding into the instability.
RESUMO
Common excitatory input to neurons increases their firing rates and the strength of the spike correlation (synchrony) between them. Little is known, however, about the synchronizing effects of modulatory common input. Here, we show that modulatory common input with the slow synaptic kinetics of N-methyl-d-aspartate (NMDA) receptors enhances firing rates and also produces synchrony. Tight synchrony (correlations on the order of milliseconds) always increases with modulatory strength. Unexpectedly, the relationship between strength of modulation and strength of loose synchrony (tens of milliseconds) is not monotonic: The strongest loose synchrony is obtained for intermediate modulatory amplitudes. This finding explains recent neurophysiological results showing that in cortical areas V1 and V2, presumed modulatory top-down input due to contour grouping increases (loose and tight) synchrony but that additional modulatory input due to top-down attention does not change tight synchrony and actually decreases loose synchrony. These neurophysiological findings are understood from our model of integrate-and-fire neurons under the assumption that contour grouping as well as attention lead to additive modulatory common input through NMDA-type synapses. In contrast, circuits with common projections through model α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors did not exhibit the paradoxical decrease of synchrony with increased input. Our results suggest that NMDA receptors play a critical role in top-down response modulation in the visual cortex.
Assuntos
Potenciais de Ação/fisiologia , Sincronização Cortical/fisiologia , Modelos Neurológicos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Animais , Atenção/fisiologia , Cinética , Macaca , Redes Neurais de Computação , Receptores de AMPA/metabolismo , Córtex Visual/metabolismo , Percepção Visual/fisiologiaRESUMO
Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates.
Assuntos
Atenção/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Animais , Humanos , Redes Neurais de Computação , Neurônios/fisiologiaRESUMO
Visual attention is often understood as a modulatory field acting at early stages of processing, but the mechanisms that direct and fit the field to the attended object are not known. We show that a purely spatial attention field propagating downward in the neuronal network responsible for perceptual organization will be reshaped, repositioned, and sharpened to match the object's shape and scale. Key features of the model are grouping neurons integrating local features into coherent tentative objects, excitatory feedback to the same local feature neurons that caused grouping neuron activation, and inhibition between incompatible interpretations both at the local feature level and at the object representation level.
Assuntos
Atenção/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Percepção Visual/fisiologia , HumanosRESUMO
Decision-making is a cognitive process involving working memory, executive function, and attention. However, the connectivity of large-scale brain networks during decision-making is not well understood. This is because gaining access to large-scale brain networks in humans is still a novel process. Here, we used SEEG (stereoelectroencephalography) to record neural activity from the default mode network (DMN), dorsal attention network (DAN), and frontoparietal network (FN) in ten humans while they performed a gambling task in the form of the card game, "War". By observing these networks during a decision-making period, we related the activity of and connectivity between these networks. In particular, we found that gamma band activity was directly related to a participant's ability to bet logically, deciding what betting amount would result in the highest monetary gain or lowest monetary loss throughout a session of the game. We also found connectivity between the DAN and the relation to a participant's performance. Specifically, participants with higher connectivity between and within these networks had higher earnings. Our preliminary findings suggest that connectivity and activity between these networks are essential during decision-making.
RESUMO
Tactile stimulation of the hand evokes highly precise and repeatable patterns of activity in mechanoreceptive afferents; the strength (i.e., firing rate) and timing of these responses have been shown to convey stimulus information. To achieve an understanding of the mechanisms underlying the representation of tactile stimuli in the nerve, we developed a two-stage computational model consisting of a nonlinear mechanical transduction stage followed by a generalized integrate-and-fire mechanism. The model improves upon a recently published counterpart in two important ways. First, complexity is dramatically reduced (at least one order of magnitude fewer parameters). Second, the model comprises a saturating nonlinearity and therefore can be applied to a much wider range of stimuli. We show that both the rate and timing of afferent responses are predicted with remarkable precision and that observed adaptation patterns and threshold behavior are well captured. We conclude that the responses of mechanoreceptive afferents can be understood using a very parsimonious mechanistic model, which can then be used to accurately simulate the responses of afferent populations.
Assuntos
Mecanorreceptores/fisiologia , Mecanotransdução Celular , Modelos Neurológicos , Potenciais de Ação , Adaptação Fisiológica , Animais , Macaca mulatta , Dinâmica não Linear , Tempo de Reação , Limiar Sensorial , Pele/inervaçãoRESUMO
Making technological advances in the field of human-machine interactions requires that the capabilities and limitations of the human perceptual system are taken into account. The focus of this report is an important mechanism of perception, visual selective attention, which is becoming more and more important for multimedia applications. We introduce the concept of visual attention and describe its underlying mechanisms. In particular, we introduce the concepts of overt and covert visual attention, and of bottom-up and top-down processing. Challenges related to modeling visual attention and their validation using ad hoc ground truth are also discussed. Examples of the usage of visual attention models in image and video processing are presented. We emphasize multimedia delivery, retargeting and quality assessment of image and video, medical imaging, and the field of stereoscopic 3D images applications.
RESUMO
Integrate-and-fire models of biological neurons combine differential equations with discrete spike events. In the simplest case, the reset of the neuronal voltage to its resting value is the only spike event. The response of such a model to constant input injection is limited to tonic spiking. We here study a generalized model in which two simple spike-induced currents are added. We show that this neuron exhibits not only tonic spiking at various frequencies but also the commonly observed neuronal bursting. Using analytical and numerical approaches, we show that this model can be reduced to a one-dimensional map of the adaptation variable and that this map is locally contractive over a broad set of parameter values. We derive a sufficient analytical condition on the parameters for the map to be globally contractive, in which case all orbits tend to a tonic spiking state determined by the fixed point of the return map. We then show that bursting is caused by a discontinuity in the return map, in which case the map is piecewise contractive. We perform a detailed analysis of a class of piecewise contractive maps that we call bursting maps and show that they robustly generate stable bursting behavior. To the best of our knowledge, this work is the first to point out the intimate connection between bursting dynamics and piecewise contractive maps. Finally, we discuss bifurcations in this return map, which cause transitions between spiking patterns.
RESUMO
Objects in the environment differ in their low-level perceptual properties (e.g., how easily a fruit can be recognized) as well as in their subjective value (how tasty it is). We studied the influence of visual salience on value-based decisions using a two alternative forced choice task, in which human subjects rapidly chose items from a visual display. All targets were equally easy to detect. Nevertheless, both value and salience strongly affected choices made and reaction times. We analyzed the neuronal mechanisms underlying these behavioral effects using stochastic accumulator models, allowing us to characterize not only the averages of reaction times but their full distributions. Independent models without interaction between the possible choices failed to reproduce the observed choice behavior, while models with mutual inhibition between alternative choices produced much better results. Mutual inhibition thus is an important feature of the decision mechanism. Value influenced the amount of accumulation in all models. In contrast, increased salience could either lead to an earlier start (onset model) or to a higher rate (speed model) of accumulation. Both models explained the data from the choice trials equally well. However, salience also affected reaction times in no-choice trials in which only one item was present, as well as error trials. Only the onset model could explain the observed reaction time distributions of error trials and no-choice trials. In contrast, the speed model could not, irrespective of whether the rate increase resulted from more frequent accumulated quanta or from larger quanta. Visual salience thus likely provides an advantage in the onset, not in the processing speed, of value-based decision making.
Assuntos
Comportamento de Escolha/fisiologia , Movimentos Oculares/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Tomada de Decisões/fisiologia , Humanos , Masculino , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Adulto JovemRESUMO
Some animals including humans use stereoscopic vision which reconstructs spatial information about the environment from the disparity between images captured by eyes in two separate adjacent locations. Like other sensory information, such stereoscopic information is expected to influence attentional selection. We develop a biologically plausible model of binocular vision to study its effect on bottom-up visual attention, i.e., visual saliency. In our model, the scene is organized in terms of proto-objects on which attention acts, rather than on unbound sets of elementary features. We show that taking into account the stereoscopic information improves the performance of the model in the prediction of human eye movements with statistically significant differences.
RESUMO
The ability to associate neutral stimuli with valence information and to store these associations as memories forms the basis for decision making. To determine the underlying computational principles, we build a realistic computational model of a central decision module within the Drosophila mushroom body (MB), the fly's center for learning and memory. Our model combines the electron microscopy-based architecture of one MB output neuron (MBON-α3), the synaptic connectivity of its 948 presynaptic Kenyon cells (KCs), and its membrane properties obtained from patch-clamp recordings. We show that this neuron is electrotonically compact and that synaptic input corresponding to simulated odor input robustly drives its spiking behavior. Therefore, sparse innervation by KCs can efficiently control and modulate MBON activity in response to learning with minimal requirements on the specificity of synaptic localization. This architecture allows efficient storage of large numbers of memories using the flexible stochastic connectivity of the circuit.
Assuntos
Drosophila , Aprendizagem , Animais , Drosophila/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Odorantes , Corpos Pedunculados/fisiologia , Drosophila melanogaster/fisiologia , Olfato/fisiologiaRESUMO
Phase-amplitude modulation (the modulation of the amplitude of higher frequency oscillations by the phase of lower frequency oscillations) is a specific type of cross-frequency coupling that has been observed in neural recordings from multiple species in a range of behavioral contexts. Given its potential importance, care must be taken with how it is measured and quantified. Previous studies have quantified phase-amplitude modulation by measuring the distance of the amplitude distribution from a uniform distribution. While this method is of general applicability, it is not targeted to the specific modulation pattern frequently observed with low-frequency oscillations. Here we develop a new method that has increased specificity to detect modulation in the sinusoidal shape commonly observed in neural data.
RESUMO
Executive function (EF) consists of higher level cognitive processes including working memory, cognitive flexibility, and inhibition which together enable goal-directed behaviors. Many neurological disorders are associated with EF dysfunctions which can lead to suboptimal behavior. To assess the roles of these processes, we introduce a novel behavioral task and modeling approach. The gamble-like task, with sub-tasks targeting different EF capabilities, allows for quantitative assessment of the main components of EF. We demonstrate that human participants exhibit dissociable variability in the component processes of EF. These results will allow us to map behavioral outcomes to EEG recordings in future work in order to map brain networks associated with EF deficits. Clinical relevance- This work will allow us to quantify EF deficits and corresponding brain activity in patient populations in future work.
Assuntos
Função Executiva , Memória de Curto Prazo , Encéfalo , Tomada de Decisões , Função Executiva/fisiologia , Humanos , Memória de Curto Prazo/fisiologia , Testes NeuropsicológicosRESUMO
To interact with its environment, a robot working in 3D space needs to organise its visual input in terms of objects or their perceptual precursors, proto-objects. Among other visual cues, depth is a submodality used to direct attention to visual features and objects. Current depth-based proto-object attention models have been implemented for standard RGB-D cameras that produce synchronous frames. In contrast, event cameras are neuromorphic sensors that loosely mimic the function of the human retina by asynchronously encoding per-pixel brightness changes at very high temporal resolution, thereby providing advantages like high dynamic range, efficiency (thanks to their high degree of signal compression), and low latency. We propose a bio-inspired bottom-up attention model that exploits event-driven sensing to generate depth-based saliency maps that allow a robot to interact with complex visual input. We use event-cameras mounted in the eyes of the iCub humanoid robot to directly extract edge, disparity and motion information. Real-world experiments demonstrate that our system robustly selects salient objects near the robot in the presence of clutter and dynamic scene changes, for the benefit of downstream applications like object segmentation, tracking and robot interaction with external objects.