Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Trends Genet ; 37(11): 955-957, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34412923

RESUMO

Transformation of the chloroplast genome offers key advantages over traditional methods for generating transgenic plants, but this approach is limited to a few plant species. Nakazato et al. have developed a novel technique that will help to extend the technology to other plant species that are recalcitrant to current tissue culture-based chloroplast transformation protocols.


Assuntos
Cloroplastos , Genomas de Plastídeos , Plantas Geneticamente Modificadas , Cloroplastos/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Plantas Geneticamente Modificadas/genética
2.
J Virol ; 96(6): e0007422, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107368

RESUMO

In this work we have determined that heat shock protein 90 (Hsp90) is essential for avian reovirus (ARV) replication by chaperoning the ARV p17 protein. p17 modulates the formation of the Hsp90/Cdc37 complex by phosphorylation of Cdc37, and this chaperone machinery protects p17 from ubiquitin-proteasome degradation. Inhibition of the Hsp90/Cdc37 complex by inhibitors (17-N-allylamino-17-demethoxygeldanamycin 17-AGG, and celastrol) or short hairpin RNAs (shRNAs) significantly reduced expression levels of viral proteins and virus yield, suggesting that the Hsp90/Cdc37 chaperone complex functions in virus replication. The expression levels of p17 were decreased at the examined time points (2 to 7 h and 7 to 16 h) in 17-AAG-treated cells in a dose-dependent manner while the expression levels of viral proteins σA, σC, and σNS were decreased at the examined time point (7 to 16 h). Interestingly, the expression levels of σC, σA, and σNS proteins increased along with coexpression of p17 protein. p17 together with the Hsp90/Cdc37 complex does not increase viral genome replication but enhances viral protein stability, maturation, and virus production. Virus factories of ARV are composed of nonstructural proteins σNS and µNS. We found that the Hsp90/Cdc37 chaperone complex plays an important role in accumulation of the outer-capsid protein σC, inner core protein σA, and nonstructural protein σNS of ARV in viral factories. Depletion of Hsp90 inhibited σA, σC, and p17 proteins colocalized with σNS in viral factories. This study provides novel insights into p17-modulated formation of the Hsp90/Cdc37 chaperone complex governing virus replication via stabilization and maturation of viral proteins and accumulation of viral proteins in viral factories for virus assembly. IMPORTANCE Molecular mechanisms that control stabilization of ARV proteins and the intermolecular interactions among inclusion components remain largely unknown. Here, we show that the ARV p17 is an Hsp90 client protein. The Hsp90/Cdc37 chaperone complex is essential for ARV replication by protecting p17 chaperone from ubiquitin-proteasome degradation. p17 modulates the formation of Hsp90/Cdc37 complex by phosphorylation of Cdc37, and this chaperone machinery protects p17 from ubiquitin-proteasome degradation, suggesting a feedback loop between p17 and the Hsp90/Cdc37 chaperone complex. p17 together with the Hsp90/Cdc37 complex does not increase viral genome replication but enhances viral protein stability and virus production. Depletion of Hsp90 prevented viral proteins σA, σC, and p17 from colocalizing with σNS in viral factories. Our findings elucidate that the Hsp90/Cdc37 complex chaperones p17, which, in turn, promotes the synthesis of viral proteins σA, σC, and σNS and facilitates accumulation of the outer-capsid protein σC and inner core protein σA in viral factories for virus assembly.


Assuntos
Proteínas de Ciclo Celular , Chaperoninas , Proteínas de Choque Térmico HSP90 , Orthoreovirus Aviário , Proteínas Virais , Replicação Viral , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Genoma Viral , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Orthoreovirus Aviário/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
3.
J Virol ; 96(17): e0083622, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35946936

RESUMO

The mechanism by which avian reovirus (ARV)-modulated suppression of mTORC1 triggers autophagy remains largely unknown. In this work, we determined that p17 functions as a negative regulator of mTORC1. This study suggest novel mechanisms whereby p17-modulated inhibition of mTORC1 occurs via upregulation of p53, inactivation of Akt, and enhancement of binding of the endogenous mTORC1 inhibitors (PRAS40, FKBP38, and FKPP12) to mTORC1 to disrupt its assembly and accumulation on lysosomes. p17-modulated inhibition of Akt leads to activation of the downstream targets PRAS40 and TSC2, which results in mTORC1 inhibition, thereby triggering autophagy and translation shutoff, which is favorable for virus replication. p17 impairs the interaction of mTORC1 with its activator Rheb, which promotes FKBP38 interaction with mTORC1. It is worth noting that p17 activates ULK1 and Beclin1 and increases the formation of the Beclin 1/class III PI3K complex. These effects could be reversed in the presence of insulin or depletion of p53. Furthermore, we found that p17 induces autophagy in cancer cell lines by upregulating the p53/PTEN pathway, which inactivates Akt and mTORC1. This study highlights p17-modulated inhibition of Akt and mTORC1, which triggers autophagy and translation shutoff by positively modulating the tumor suppressors p53 and TSC2 and endogenous mTORC1 inhibitors. IMPORTANCE The mechanisms by which p17-modulated inhibition of mTORC1 induces autophagy and translation shutoff is elucidated. In this work, we determined that p17 serves as a negative regulator of mTORC1. This study provides several lines of conclusive evidence demonstrating that p17-modulated inhibition of mTORC1 occurs via upregulation of the p53/PTEN pathway, downregulation of the Akt/Rheb/mTORC1 pathway, enhancement of binding of the endogenous mTORC1 inhibitors to mTORC1 to disrupt its assembly, and suppression of mTORC1 accumulation on lysosomes. This work provides valuable information for better insights into p17-modulated inhibition of mTORC1, which induces autophagy and translation shutoff to benefit virus replication.


Assuntos
Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Orthoreovirus Aviário , Proteínas Adaptadoras de Transdução de Sinal , Autofagia , Linhagem Celular Tumoral , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Orthoreovirus Aviário/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a Tacrolimo , Proteína 2 do Complexo Esclerose Tuberosa , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807153

RESUMO

Soil salinity is an increasing problem facing agriculture in many parts of the world. Climate change and irrigation practices have led to decreased yields of some farmland due to increased salt levels in the soil. Plants that have tolerance to salt are thus needed to feed the world's population. One approach addressing this problem is genetic engineering to introduce genes encoding salinity, but this approach has limitations. Another fairly new approach is the isolation and development of salt-tolerant (halophilic) plant-associated bacteria. These bacteria are used as inoculants to stimulate plant growth. Several reports are now available, demonstrating how the use of halophilic inoculants enhance plant growth in salty soil. However, the mechanisms for this growth stimulation are as yet not clear. Enhanced growth in response to bacterial inoculation is expected to be associated with changes in plant gene expression. In this review, we discuss the current literature and approaches for analyzing altered plant gene expression in response to inoculation with halophilic bacteria. Additionally, challenges and limitations to current approaches are analyzed. A further understanding of the molecular mechanisms involved in enhanced plant growth when inoculated with salt-tolerant bacteria will significantly improve agriculture in areas affected by saline soils.


Assuntos
Halobacteriales/metabolismo , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/microbiologia , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/metabolismo , Bactérias/metabolismo , Expressão Gênica , Genes de Plantas , Raízes de Plantas/metabolismo , Salinidade , Solo/química , Microbiologia do Solo
5.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375578

RESUMO

Avian reovirus (ARV) p17 protein continuously shuttles between the nucleus and the cytoplasm via transcription-dependent and chromosome region maintenance 1 (CRM1)-independent mechanisms. Nevertheless, whether cellular proteins modulate nucleocytoplasmic shuttling of p17 remains unknown. This is the first report that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 serves as a carrier protein to modulate nucleocytoplasmic shuttling of p17. Both in vitro and in vivo studies indicated that direct interaction of p17 with hnRNP A1 maps within the amino terminus (amino acids [aa] 19 to 40) of p17 and the Gly-rich region of the C terminus of hnRNP A1. Furthermore, our results reveal that the formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Utilizing sequence and mutagenesis analyses, we have identified nuclear export signal (NES) 19LSLRELAI26 of p17. Mutations of these residues causes a nuclear retention of p17. In this work, we uncovered that the N-terminal 21 amino acids (aa 19 to 40) of p17 that comprise the NES can modulate both p17 and hnRNP A1 interaction and nucleocytoplasmic shuttling of p17. In this work, the interaction site of p17 with lamin A/C was mapped within the amino terminus (aa 41 to 60) of p17 and p17 colocalized with lamin A/C at the nuclear envelope. Knockdown of hnRNP A1 or lamin A/C led to inhibition of nucleocytoplasmic shuttling of p17 and reduced virus yield. Collectively, the results of this study provide mechanistic insights into hnRNP A1 and lamin A/C-modulated nucleocytoplasmic shuttling of the ARV p17 protein.IMPORTANCE Avian reoviruses (ARVs) cause considerable economic losses in the poultry industry. The ARV p17 protein continuously shuttles between the nucleus and the cytoplasm to regulate several cellular signaling pathways and interacts with several cellular proteins to cause translation shutoff, cell cycle arrest, and autophagosome formation, all of which enhance virus replication. To date the mechanisms underlying nucleocytoplasmic shuttling of p17 remain largely unknown. Here we report that hnRNP A1 and lamin A/C serve as carrier and mediator proteins to modulate nucleocytoplasmic shuttling of p17. The formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Furthermore, we have identified an NES-containing nucleocytoplasmic shuttling domain (aa 19 to 40) of p17 that is critical for binding to hnRNP A1 and for nucleocytoplasmic shuttling of p17. This study provides novel insights into how hnRNP A1 and lamin A/C modulate nucleocytoplasmic shuttling of the ARV p17 protein.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Interações Hospedeiro-Patógeno , Lamina Tipo A/metabolismo , Orthoreovirus Aviário/fisiologia , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas da Matriz Viral/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica
7.
Vet Res ; 51(1): 112, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907618

RESUMO

To increase expression levels of the PCV2 Cap(d41) protein, novel baculovirus surface display vectors with multiple expression cassettes were constructed to create recombinant baculoviruses BacSC-Cap(d41), BacDD-2Cap(d41), BacDD-3Cap(d41), and BacDD-4Cap(d41). Our results reveal that the recombinant baculovirus BacDD-4Cap(d41) was able to express the highest levels of Cap(d41) protein. Optimum conditions for expressing the PCV2 Cap(d41) protein were determined, and our results show that 107 of Sf-9 infected with the recombinant baculovirus BacDD-4Cap(d41) at an MOI of 5 for 3 days showed the highest level of protein expression. Mice immunized with the 4Cap(d41) vaccine which was prepared from the recombinant baculovirus-infected cells (107) elicited higher ELISA titers compared to the Cap (d41) vaccine. The 4Cap(d41) vaccine could elicit anti-PCV2 neutralizing antibodies and IFN-γ in mice, as confirmed by virus neutralization test and IFN-γ ELISA. Moreover, the swine lymphocyte proliferative responses indicated that the 4Cap(d41) vaccine was able to induce a clear cellular immune response. Flow cytometry analysis showed that the percentage of CD4+ T cells and CD4+/CD8+ ratio was increased significantly in SPF pigs immunized with the 4Cap(d41) vaccine. Importantly, the 4Cap(d41) vaccine induced an IFN-γ response, further confirming that its effect is through cellular immunity in SPF pigs. An in vivo challenge study revealed that the 4Cap(d41) and the commercial vaccine groups significantly reduce the viral load of vaccinated pigs as compared with the CE negative control group. Taken together, we have successfully developed a 4Cap(d41) vaccine that may be a potential subunit vaccine for preventing the disease associated with PCV2 infections.


Assuntos
Baculoviridae , Infecções por Circoviridae/veterinária , Circovirus/imunologia , Imunogenicidade da Vacina , Doenças dos Suínos/imunologia , Proteínas Virais/imunologia , Animais , Infecções por Circoviridae/imunologia , Vetores Genéticos/administração & dosagem , Camundongos , Organismos Livres de Patógenos Específicos , Sus scrofa , Suínos , Proteínas Virais/administração & dosagem
8.
J Biol Chem ; 293(32): 12542-12562, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29907572

RESUMO

The avian reovirus p17 protein is a nucleocytoplasmic shuttling protein. Although we have demonstrated that p17 causes cell growth retardation via activation of p53, the precise mechanisms remain unclear. This is the first report that avian reovirus p17 possesses broad inhibitory effects on cell cycle CDKs, cyclins, CDK-cyclin complexes, and CDK-activating kinase activity in various mammalian, avian, and cancer cell lines. Suppression of CDK activity by p17 occurs by direct binding to CDKs, cyclins, and CDK-cyclin complexes; transcriptional down-regulation of CDKs; cytoplasmic retention of CDKs and cyclins; and inhibition of CDK-activating kinase activity by promoting p53-cyclin H interaction. p17 binds to CDK-cyclin except for CDK1-cyclin B1 and CDK7-cyclin H complexes. We have determined that the negatively charged 151LAVXDVDA(E/D)DGADPN165 motif in cyclin B1 interacts with a positively charged region of CDK1. p17 mimics the cyclin B1 sequence to compete for CDK1 binding. The PSTAIRE motif is not required for interaction of CDK1-cyclin B1, but it is required for other CDK-cyclin complexes. p17 interacts with cyclins by its cyclin-binding motif, 125RXL127 Sequence and mutagenic analyses of p17 indicated that a 140WXFD143 motif and residues Asp-113 and Lys-122 in p17 are critical for CDK2 and CDK6 binding, leading to their sequestration in the cytoplasm. Exogenous expression of p17 significantly enhanced virus replication, whereas p17 mutants with low binding ability to cell cycle CDKs had no effect on virus yield, suggesting that p17 inhibits cell growth and the cell cycle, benefiting virus replication. An in vivo tumorigenesis assay also showed a significant reduction in tumor size.


Assuntos
Ciclina H/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Orthoreovirus Aviário/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Virais/metabolismo , Animais , Ciclo Celular , Embrião de Galinha , Chlorocebus aethiops , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclina H/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Ciclinas/antagonistas & inibidores , Humanos , Infecções por Reoviridae/virologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Células Vero , Proteínas Virais/genética
9.
BMC Plant Biol ; 19(1): 241, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170927

RESUMO

BACKGROUND: Plant chloroplasts and mitochondria utilize nuclear encoded proteins to replicate their DNA. These proteins are purposely built for replication in the organelle environment and are distinct from those involved in replication of the nuclear genome. These organelle-localized proteins have ancestral roots in bacterial and bacteriophage genes, supporting the endosymbiotic theory of their origin. We examined the interactions between three of these proteins from Arabidopsis thaliana: a DNA helicase-primase similar to bacteriophage T7 gp4 protein and animal mitochondrial Twinkle, and two DNA polymerases, Pol1A and Pol1B. We used a three-pronged approach to analyze the interactions, including Yeast-two-hybrid analysis, Direct Coupling Analysis (DCA), and thermophoresis. RESULTS: Yeast-two-hybrid analysis reveals residues 120-295 of Twinkle as the minimal region that can still interact with Pol1A or Pol1B. This region is a part of the primase domain of the protein and slightly overlaps the zinc-finger and RNA polymerase subdomains located within. Additionally, we observed that Arabidopsis Twinkle interacts much more strongly with Pol1A versus Pol1B. Thermophoresis also confirms that the primase domain of Twinkle has higher binding affinity than any other region of the protein. Direct-Coupling-Analysis identified specific residues in Twinkle and the DNA polymerases critical to positive interaction between the two proteins. CONCLUSIONS: The interaction of Twinkle with Pol1A or Pol1B mimics the minimal DNA replisomes of T7 phage and those present in mammalian mitochondria. However, while T7 and mammals absolutely require their homolog of Twinkle DNA helicase-primase, Arabidopsis Twinkle mutants are seemingly unaffected by this loss. This implies that while Arabidopsis mitochondria mimic minimal replisomes from T7 and mammalian mitochondria, there is an extra level of redundancy specific to loss of Twinkle function.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Bacteriófago T7/genética , DNA Polimerase Dirigida por DNA/genética , Complexos Multienzimáticos/genética , Enzimas Multifuncionais/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Mitocôndrias/metabolismo , Enzimas Multifuncionais/metabolismo
10.
Cell Microbiol ; 20(12): e12946, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30156372

RESUMO

Adenosine triphosphate (ATP) is an energy source for many types of viruses for facilitating virus replication. This is the first report to demonstrate that the structural protein σA of avian reovirus (ARV) functions as an activator of cellular energy. Three cellular factors, isocitrate dehydrogenase 3 subunit beta (IDH3B), lactate dehydrogenase A (LDHA), and vacuolar-type H+-ATPase (vATPase) co-immunoprecipitated with ARV σA and were identified by 2D-LC/MS/MS. ARV enhances glycolytic flux through upregulation of glycolytic enzymes. Increased ATP levels in both ARV-infected and σA-transfected cells were observed by a fluorescence resonance energy transfer-based genetically encoded indicator, Ateams. Furthermore, σA upregulates IDH3B and glutamate dehydrogenase (GDH) to promote glutaminolysis, activating HIF-1α. Both HIF-1α level and viral yield in IDH3B-depleted and glutamine-deprived cells, and inhibition of glutaminolysis was significantly reduced. The σAR155/273A mutant loses its ability to enter the nucleolus, impairing its ability to regulate glycolysis. In addition, we have identified the conserved untranslated regions (UTR) of the 5'- and 3'-termini of the ARV genome segments that are required for viral protein synthesis in an ATP-dependent manner. Deletion of either the 5'- or 3'-UTR impaired viral protein synthesis. Knockdown of σA reduced the ATP level and significantly decreased virus yield, suggesting that σA enhances ATP formation to promote virus replication. Collectively, this study provides novel insights into σA-modulated suppression of LDHA and activation of IDH3B and GDH to activate the mTORC1/eIF4E/HIF-1α pathways to upregulate glycolysis and the TCA cycle for virus replication.


Assuntos
Glicólise/fisiologia , L-Lactato Desidrogenase/metabolismo , Orthoreovirus Aviário/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral/fisiologia , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Trifosfato de Adenosina/metabolismo , Animais , Chlorocebus aethiops , Ciclo do Ácido Cítrico/fisiologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Genoma Viral , Glutamina/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isocitrato Desidrogenase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Orthoreovirus Aviário/patogenicidade , Infecções por Reoviridae/metabolismo , Células Vero
11.
Vet Res ; 50(1): 79, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601269

RESUMO

Autophagy plays an important role in cellular response to pathogens. However, the impact of the autophagy machinery on bovine ephemeral fever virus (BEFV) infection is not yet determined. A recent study in our laboratory demonstrated that BEFV triggers simultaneously the PI3K/Akt/NF-κB and Src/JNK-AP1 pathways in the stage of virus binding to enhance virus entry. In this work, we report that BEFV induces autophagy via upregulation of the PI3K/Akt/NF-κB and Src/JNK/AP1 pathways in the early to middle stages of infection and suppresses the PI3K/Akt/mTOR pathway at the late stage of infection. To activate NF-κB, BEFV promotes degradation of IκBα and activates Akt to stimulate NF-κB translocation into the nucleus. Immunoprecipitation assays revealed that BEFV disrupts Beclin 1 and Bcl-2 interaction by JNK-mediated Bcl-2 phosphorylation, thereby activating autophagy. Overexpression of Bcl-2 reversed the BEFV-induced increase in the LC3 II levels. Suppression of autophagy either by knockdown of autophagy-related genes with shRNAs or treatment with a pharmacological inhibitor 3-MA reduced BEFV replication, suggesting that BEFV-induced autophagy benefits virus replication. Our results revealed that the BEFV M protein is one of the viral proteins involved in inducing autophagy via suppression of the PI3K/Akt/mTORC1 pathway. Furthermore, degradation of p62 was observed by immunoblotting, suggesting that BEFV infection triggers a complete autophagic response. Disruption of autophagosome-lysosome fusion by depleting LAMP2 resulted in reduction of virus yield, suggesting that formation of autolysosome benefits virus production.


Assuntos
Autofagia , Vírus da Febre Efêmera Bovina/fisiologia , Febre Efêmera/fisiopatologia , Transdução de Sinais , Regulação para Cima , Replicação Viral , Animais , Bovinos
12.
BMC Genomics ; 16: 353, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943316

RESUMO

BACKGROUND: Improvement of crop production is needed to feed the growing world population as the amount and quality of agricultural land decreases and soil salinity increases. This has stimulated research on salt tolerance in plants. Most crops tolerate a limited amount of salt to survive and produce biomass, while halophytes (salt-tolerant plants) have the ability to grow with saline water utilizing specific biochemical mechanisms. However, little is known about the genes involved in salt tolerance. We have characterized the transcriptome of Suaeda fruticosa, a halophyte that has the ability to sequester salts in its leaves. Suaeda fruticosa is an annual shrub in the family Chenopodiaceae found in coastal and inland regions of Pakistan and Mediterranean shores. This plant is an obligate halophyte that grows optimally from 200-400 mM NaCl and can grow at up to 1000 mM NaCl. High throughput sequencing technology was performed to provide understanding of genes involved in the salt tolerance mechanism. De novo assembly of the transcriptome and analysis has allowed identification of differentially expressed and unique genes present in this non-conventional crop. RESULTS: Twelve sequencing libraries prepared from control (0 mM NaCl treated) and optimum (300 mM NaCl treated) plants were sequenced using Illumina Hiseq 2000 to investigate differential gene expression between shoots and roots of Suaeda fruticosa. The transcriptome was assembled de novo using Velvet and Oases k-45 and clustered using CDHIT-EST. There are 54,526 unigenes; among these 475 genes are downregulated and 44 are upregulated when samples from plants grown under optimal salt are compared with those grown without salt. BLAST analysis identified the differentially expressed genes, which were categorized in gene ontology terms and their pathways. CONCLUSIONS: This work has identified potential genes involved in salt tolerance in Suaeda fruticosa, and has provided an outline of tools to use for de novo transcriptome analysis. The assemblies that were used provide coverage of a considerable proportion of the transcriptome, which allows analysis of differential gene expression and identification of genes that may be involved in salt tolerance. The transcriptome may serve as a reference sequence for study of other succulent halophytes.


Assuntos
Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Perfilação da Expressão Gênica , Salinidade , Cloreto de Sódio/farmacologia , Chenopodiaceae/efeitos dos fármacos , Chenopodiaceae/metabolismo , Etiquetas de Sequências Expressas/metabolismo , Ontologia Genética , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética
13.
Plants (Basel) ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891337

RESUMO

Studies on obligate halophytes combining eco-physiological techniques and proteomic analysis are crucial for understanding salinity tolerance mechanisms but are limited. We thus examined growth, water relations, ion homeostasis, photosynthesis, oxidative stress mitigation and proteomic responses of an obligate halophyte Suaeda fruticosa to increasing salinity under semi-hydroponic culture. Most biomass parameters increased under moderate (300 mmol L-1 of NaCl) salinity, while high (900 mmol L-1 of NaCl) salinity caused some reduction in biomass parameters. Under moderate salinity, plants showed effective osmotic adjustment with concomitant accumulation of Na+ in both roots and leaves. Accumulation of Na+ did not accompany nutrient deficiency, damage to photosynthetic machinery and oxidative damage in plants treated with 300 mmol L-1 of NaCl. Under high salinity, plants showed further decline in sap osmotic potential with higher Na+ accumulation that did not coincide with a decline in relative water content, Fv/Fm, and oxidative damage markers (H2O2 and MDA). There were 22, 54 and 7 proteins in optimal salinity and 29, 46 and 8 proteins in high salinity treatment that were up-regulated, down-regulated or exhibited no change, respectively, as compared to control plants. These data indicate that biomass reduction in S. fruticosa at high salinity might result primarily from increased energetic cost rather than ionic toxicity.

14.
Vet Microbiol ; 291: 110026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364467

RESUMO

This study demonstrates for the first time that the matrix (M) protein of BEFV is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm in a transcription-, carrier-, and energy-dependent manner. Experiments performed in both intact cells and digitonin-permeabilized cells revealed that M protein targets the nucleolus and requires carrier, cytosolic factors or energy input. By employing sequence and mutagenesis analyses, we have determined both nuclear localization signal (NLS) 6KKGKSK11 and nuclear export signal (NES) 98LIITSYL TI106 of M protein that are important for the nucleocytoplasmic shuttling of M protein. Furthermore, we found that both lamin A/C and chromosome maintenance region 1 (CRM-1) proteins could be coimmunoprecipitated and colocalized with the BEFV M protein. Knockdown of lamin A/C by shRNA and inhibition of CRM-1 by leptomycin B significantly reduced virus yield. Collectively, this study provides novel insights into nucleocytoplasmic shuttling of the BEFV M protein modulated by lamin A/C and CRM-1 and by a transcription- and carrier- and energy-dependent pathway.


Assuntos
Transporte Ativo do Núcleo Celular , Vírus da Febre Efêmera Bovina , Lamina Tipo A , Sinais de Localização Nuclear , Animais , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Citoplasma/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Vírus da Febre Efêmera Bovina/metabolismo , Proteínas Estruturais Virais/metabolismo
15.
Viruses ; 16(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066315

RESUMO

To explore whether the p17 protein of oncolytic avian reovirus (ARV) mediates cell migration and invadopodia formation, we applied several molecular biological approaches for studying the involved cellular factors and signal pathways. We found that ARV p17 activates the p53/phosphatase and tensin homolog (PTEN) pathway to suppress the focal adhesion kinase (FAK)/Src signaling and downstream signal molecules, thus inhibiting cell migration and the formation of invadopodia in murine melanoma cancer cell line (B16-F10). Importantly, p17-induced formation of invadopodia could be reversed in cells transfected with the mutant PTENC124A. p17 protein was found to significantly reduce the expression levels of tyrosine kinase substrate 5 (TKs5), Rab40b, non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), and matrix metalloproteinases (MMP9), suggesting that TKs5 and Rab40b were transcriptionally downregulated by p17. Furthermore, we found that p17 suppresses the formation of the TKs5/NCK1 complex. Coexpression of TKs5 and Rab40b in B16-F10 cancer cells reversed p17-modulated suppression of the formation of invadopodia. This work provides new insights into p17-modulated suppression of invadopodia formation by activating the p53/PTEN pathway, suppressing the FAK/Src pathway, and inhibiting the formation of the TKs5/NCK1 complex.


Assuntos
Movimento Celular , Quinase 1 de Adesão Focal , Orthoreovirus Aviário , Podossomos , Transdução de Sinais , Animais , Camundongos , Orthoreovirus Aviário/fisiologia , Orthoreovirus Aviário/genética , Linhagem Celular Tumoral , Podossomos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Vírus Oncolíticos/fisiologia , Vírus Oncolíticos/genética , Quinases da Família src/metabolismo , Quinases da Família src/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Melanoma Experimental/terapia , Melanoma Experimental/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética
16.
BMC Plant Biol ; 13: 36, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23452619

RESUMO

BACKGROUND: The Arabidopsis thaliana genome encodes a homologue of the full-length bacteriophage T7 gp4 protein, which is also homologous to the eukaryotic Twinkle protein. While the phage protein has both DNA primase and DNA helicase activities, in animal cells Twinkle is localized to mitochondria and has only DNA helicase activity due to sequence changes in the DNA primase domain. However, Arabidopsis and other plant Twinkle homologues retain sequence homology for both functional domains of the phage protein. The Arabidopsis Twinkle homologue has been shown by others to be dual targeted to mitochondria and chloroplasts. RESULTS: To determine the functional activity of the Arabidopsis protein we obtained the gene for the full-length Arabidopsis protein and expressed it in bacteria. The purified protein was shown to have both DNA primase and DNA helicase activities. Western blot and qRT-PCR analysis indicated that the Arabidopsis gene is expressed most abundantly in young leaves and shoot apex tissue, as expected if this protein plays a role in organelle DNA replication. This expression is closely correlated with the expression of organelle-localized DNA polymerase in the same tissues. Homologues from other plant species show close similarity by phylogenetic analysis. CONCLUSIONS: The results presented here indicate that the Arabidopsis phage T7 gp4/Twinkle homologue has both DNA primase and DNA helicase activities and may provide these functions for organelle DNA replication.


Assuntos
Arabidopsis/enzimologia , Bacteriófago T7/enzimologia , DNA Helicases/metabolismo , DNA Primase/metabolismo , Proteínas do Envelope Viral/metabolismo , Arabidopsis/genética , DNA Helicases/genética , DNA Primase/genética , Proteínas do Envelope Viral/genética
17.
Physiol Plant ; 149(1): 91-103, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23167278

RESUMO

Plant organelle genomes are complex and the mechanisms for their replication and maintenance remain unclear. Arabidopsis thaliana has two DNA polymerase genes, DNA polymerase IA (polIA) and polIB, that are dual targeted to mitochondria and chloroplasts and are differentially expressed in primary plant tissues. PolIB gene expression occurs at higher levels in tissues not primary for photosynthesis. Arabidopsis T-DNA polIB mutants have a 30% reduction in relative mitochondrial DNA (mtDNA) levels, but also exhibit a 70% increase in polIA gene expression. The polIB mutant shows an increase in mitochondrial numbers but a significant decrease in mitochondrial area density within the hypocotyl epidermis, shoot apex and root tips. Chloroplast numbers are not significantly different in mesophyll protoplasts. These mutants do not have a significant difference in total dark mitorespiration levels but exhibit a difference in light respiration levels and photosynthesis capacity. Organelle-encoded genes for components of respiration and photosynthesis are upregulated in polIB mutants. The mutants exhibited slow growth in conjunction with a decreased rate of cell expansion and other secondary phenotypic effects. Evidence suggests that early plastid development and DNA levels are directly affected by a polIB mutation but are resolved to wild-type levels over time. However, mitochondria numbers and DNA levels never reach wild-type levels in the polIB mutant. We propose that both polIA and polIB are required for mtDNA replication. The results suggest that polIB mutants undergo an adjustment in cell homeostasis, enabling them to maintain functional mitochondria at the cost of normal cell expansion and plant growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , DNA Polimerase I/genética , DNA Mitocondrial/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Respiração Celular/genética , Cloroplastos/genética , Cloroplastos/metabolismo , DNA Polimerase I/metabolismo , DNA Mitocondrial/genética , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Organelas/genética , Fotossíntese/genética , Plantas Geneticamente Modificadas , Plastídeos/fisiologia
18.
Microorganisms ; 11(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38138054

RESUMO

The salinization of soils is a growing agricultural concern worldwide. Irrigation practices, drought, and climate change are leading to elevated salinity levels in many regions, resulting in reduced crop yields. However, there is potential for a solution in the microbiome of halophytes, which are naturally salt-tolerant plants. These plants harbor a salt-tolerant microbiome in their rhizosphere (around roots) and endosphere (within plant tissue). These bacteria may play a significant role in conferring salt tolerance to the host plants. This leads to the possibility of transferring these beneficial bacteria, known as salt-tolerant plant-growth-promoting bacteria (ST-PGPB), to salt-sensitive plants, enabling them to grow in salt-affected areas to improve crop productivity. In this review, the background of salt-tolerant microbiomes is discussed and their potential use as ST-PGPB inocula is explored. We focus on two Gram-negative bacterial genera, Halomonas and Kushneria, which are commonly found in highly saline environments. These genera have been found to be associated with some halophytes, suggesting their potential for facilitating ST-PGPB activity. The study of salt-tolerant microbiomes and their use as PGPB holds promise for addressing the challenges posed by soil salinity in the context of efforts to improve crop growth in salt-affected areas.

19.
Microbiol Spectr ; 11(3): e0000923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37097149

RESUMO

The specifics of cell receptor-modulated avian reovirus (ARV) entry remain unknown. By using a viral overlay protein-binding assay (VOPBA) and an in-gel digestion coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we determined that cell-surface annexin A2 (AnxA2) and adhesion G protein-coupled receptor Latrophilin-2 (ADGRL2) modulate ARV entry. Direct interaction between the ARV σC protein and AnxA2 and ADGRL2 in Vero and DF-1 cells was demonstrated in situ by proximity ligation assays. By using short hairpin RNAs (shRNAs) to silence the endogenous AnxA2 and ADGRL2 genes, ARV entry could be efficiently blocked. A significant decrease in virus yields and the intracellular specific signal for σC protein was observed in Vero cells preincubated with the specific AnxA2 and ADGRL2 monoclonal antibodies, indicating that AnxA2 and ADGRL2 are involved in modulating ARV entry. Furthermore, we found that cells pretreated with the AnxA2/S100A10 heterotetramer (A2t) inhibitor A2ti-1 suppressed ARV-mediated activation of Src and p38 mitogen-activated protein kinase (MAPK), demonstrating that Src and p38 MAPK serve as downstream molecules of cell-surface AnxA2 signaling. Our results reveal that suppression of cell-surface AnxA2 with the A2ti-1 inhibitor increased Csk-Cbp interaction, suggesting that ARV entry suppresses Cbp-mediated relocation of Csk to the membrane, thereby activating Src. Furthermore, reciprocal coimmunoprecipitation assays revealed that σC can interact with signaling molecules, lipid raft, and vimentin. The current study provides novel insights into cell-surface AnxA2- and ADGRL2-modulated cell entry of ARV which triggers Src and p38 MAPK signaling to enhance caveolin-1-, dynamin 2-, and lipid raft-dependent endocytosis. IMPORTANCE By analyzing results from VOPBA and LC-MS/MS, we have determined that cell-surface AnxA2 and ADGRL2 modulate ARV entry. After ARV binding to receptors, Src and p38 MAPK signaling were triggered and, in turn, increased the phosphorylation of caveolin-1 (Tyr14) and upregulated dynamin 2 expression to facilitate caveolin-1-mediated and dynamin 2-dependent endocytosis. In this work, we demonstrated that ARV triggers Src activation by impeding Cbp-mediated relocation of Csk to the membrane in the early stages of the life cycle. This work provides better insight into cell-surface AnxA2 and ADGRL2, which upregulate Src and p38MAPK signaling pathways to enhance ARV entry and productive infection.


Assuntos
Anexina A2 , Orthoreovirus Aviário , Animais , Chlorocebus aethiops , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Vero , Orthoreovirus Aviário/metabolismo , Internalização do Vírus , Anexina A2/genética , Anexina A2/metabolismo , Dinamina II/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Endocitose , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo
20.
Plants (Basel) ; 12(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514204

RESUMO

Brassica species show varying levels of resistance to salt stress. To understand the genetics underlying these differential stress tolerance patterns in Brassicas, we exposed two widely cultivated amphidiploid Brassica species having different genomes, Brassica juncea (AABB, n = 18) and Brassica napus (AACC, n = 19), to elevated levels of NaCl concentration (300 mM, half the salinity of seawater). B. juncea produced more biomass, an increased chlorophyll content, and fewer accumulated sodium (Na+) and chloride (Cl-) ions in its photosynthesizing tissues. Chlorophyll fluorescence assays revealed that the reaction centers of PSII of B. juncea were more photoprotected and hence more active than those of B. napus under NaCl stress, which, in turn, resulted in a better PSII quantum efficiency, better utilization of photochemical energy with significantly reduced energy loss, and higher electron transport rates, even under stressful conditions. The expression of key genes responsible for salt tolerance (NHX1 and AVP1, which are nuclear-encoded) and photosynthesis (psbA, psaA, petB, and rbcL, which are chloroplast-encoded) were monitored for their genetic differences underlying stress tolerance. Under NaCl stress, the expression of NHX1, D1, and Rubisco increased several folds in B. juncea plants compared to B. napus, highlighting differences in genetics between these two Brassicas. The higher photosynthetic potential under stress suggests that B. juncea is a promising candidate for genetic modifications and its cultivation on marginal lands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA