Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Magn Reson Med ; 92(1): 246-256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38469671

RESUMO

PURPOSE: To reduce the inter-scanner variability of diffusion MRI (dMRI) measures between scanners from different vendors by developing a vendor-neutral dMRI pulse sequence using the open-source vendor-agnostic Pulseq platform. METHODS: We implemented a standard EPI based dMRI sequence in Pulseq. We tested it on two clinical scanners from different vendors (Siemens Prisma and GE Premier), systematically evaluating and comparing the within- and inter-scanner variability across the vendors, using both the vendor-provided and Pulseq dMRI sequences. Assessments covered both a diffusion phantom and three human subjects, using standard error (SE) and Lin's concordance correlation to measure the repeatability and reproducibility of standard DTI metrics including fractional anisotropy (FA) and mean diffusivity (MD). RESULTS: Identical dMRI sequences were executed on both scanners using Pulseq. On the phantom, the Pulseq sequence showed more than a 2.5× reduction in SE (variability) across Siemens and GE scanners. Furthermore, Pulseq sequences exhibited markedly reduced SE in-vivo, maintaining scan-rescan repeatability while delivering lower variability in FA and MD (more than 50% reduction in cortical/subcortical regions) compared to vendor-provided sequences. CONCLUSION: The Pulseq diffusion sequence reduces the cross-scanner variability for both phantom and in-vivo data, which will benefit multi-center neuroimaging studies and improve the reproducibility of neuroimaging studies.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Anisotropia , Algoritmos , Masculino , Adulto , Feminino
2.
Magn Reson Med ; 92(6): 2506-2519, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39136245

RESUMO

PURPOSE: To compare the performance of multi-echo (ME) and time-division multiplexing (TDM) sequences for accelerated relaxation-diffusion MRI (rdMRI) acquisition and to examine their reliability in estimating accurate rdMRI microstructure measures. METHOD: The ME, TDM, and the reference single-echo (SE) sequences with six TEs were implemented using Pulseq with single-band (SB) and multi-band 2 (MB2) acceleration factors. On a diffusion phantom, the image intensities of the three sequences were compared, and the differences were quantified using the normalized RMS error (NRMSE). Shinnar-Le Roux (SLR) pulses were implemented for the SB-ME and SB-SE sequences to investigate the impact of slice profiles on ME sequences. For the in-vivo brain scan, besides the image intensity comparison and T2-estimates, different methods were used to assess sequence-related effects on microstructure estimation, including the relaxation diffusion imaging moment (REDIM) and the maximum-entropy relaxation diffusion distribution (MaxEnt-RDD). RESULTS: TDM performance was similar to the gold standard SE acquisition, whereas ME showed greater biases (3-4× larger NRMSEs for phantom, 2× for in-vivo). T2 values obtained from TDM closely matched SE, whereas ME sequences underestimated the T2 relaxation time. TDM provided similar diffusion and relaxation parameters as SE using REDIM, whereas SB-ME exhibited a 60% larger bias in the map and on average 3.5× larger bias in the covariance between relaxation-diffusion coefficients. CONCLUSION: Our analysis demonstrates that TDM provides a more accurate estimation of relaxation-diffusion measurements while accelerating the acquisitions by a factor of 2 to 3.


Assuntos
Algoritmos , Encéfalo , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Humanos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Adulto , Masculino , Interpretação de Imagem Assistida por Computador/métodos , Feminino
3.
Magn Reson Med ; 90(2): 417-431, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066854

RESUMO

PURPOSE: Optimizing three-dimensional (3D) k-space sampling trajectories is important for efficient MRI yet presents a challenging computational problem. This work proposes a generalized framework for optimizing 3D non-Cartesian sampling patterns via data-driven optimization. METHODS: We built a differentiable simulation model to enable gradient-based methods for sampling trajectory optimization. The algorithm can simultaneously optimize multiple properties of sampling patterns, including image quality, hardware constraints (maximum slew rate and gradient strength), reduced peripheral nerve stimulation (PNS), and parameter-weighted contrast. The proposed method can either optimize the gradient waveform (spline-based freeform optimization) or optimize properties of given sampling trajectories (such as the rotation angle of radial trajectories). Notably, the method can optimize sampling trajectories synergistically with either model-based or learning-based reconstruction methods. We proposed several strategies to alleviate the severe nonconvexity and huge computation demand posed by the large scale. The corresponding code is available as an open-source toolbox. RESULTS: We applied the optimized trajectory to multiple applications including structural and functional imaging. In the simulation studies, the image quality of a 3D kooshball trajectory was improved from 0.29 to 0.22 (NRMSE) with Stochastic optimization framework for 3D NOn-Cartesian samPling trajectorY (SNOPY) optimization. In the prospective studies, by optimizing the rotation angles of a stack-of-stars (SOS) trajectory, SNOPY reduced the NRMSE of reconstructed images from 1.19 to 0.97 compared to the best empirical method (RSOS-GR). Optimizing the gradient waveform of a rotational EPI trajectory improved participants' rating of the PNS from "strong" to "mild." CONCLUSION: SNOPY provides an efficient data-driven and optimization-based method to tailor non-Cartesian sampling trajectories.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Imageamento Tridimensional/métodos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Rotação
4.
NMR Biomed ; 36(5): e4867, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36326709

RESUMO

In magnetic resonance imaging (MRI), inhomogeneity in the main magnetic field used for imaging, referred to as off-resonance, can lead to image artifacts ranging from mild to severe depending on the application. Off-resonance artifacts, such as signal loss, geometric distortions, and blurring, can compromise the clinical and scientific utility of MR images. In this review, we describe sources of off-resonance in MRI, how off-resonance affects images, and strategies to prevent and correct for off-resonance. Given recent advances and the great potential of low-field and/or portable MRI, we also highlight the advantages and challenges of imaging at low field with respect to off-resonance.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Campos Magnéticos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
5.
Magn Reson Med ; 88(6): 2395-2407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35968675

RESUMO

PURPOSE: This work presents an end-to-end open-source MR imaging workflow. It is highly flexible in rapid prototyping across the whole imaging process and integrates vendor-independent openly available tools. The whole workflow can be shared and executed on different MR platforms. It is also integrated in the JEMRIS simulation framework, which makes it possible to generate simulated data from the same sequence that runs on the MRI scanner using the same pipeline for image reconstruction. METHODS: MRI sequences can be designed in Python or JEMRIS using the Pulseq framework, allowing simplified integration of new sequence design tools. During the sequence design process, acquisition metadata required for reconstruction is stored in the MR raw data format. Data acquisition is possible on MRI scanners supported by Pulseq and in simulations through JEMRIS. An image reconstruction and postprocessing pipeline was implemented into a Python server that allows real-time processing of data as it is being acquired. The Berkeley Advanced Reconstruction Toolbox is integrated into this framework for image reconstruction. The reconstruction pipeline supports online integration through a vendor-dependent interface. RESULTS: The flexibility of the workflow is demonstrated with different examples, containing 3D parallel imaging with controlled aliasing in volumetric parallel imaging (CAIPIRINHA) acceleration, spiral imaging, and B0 mapping. All sequences, data, and the corresponding processing pipelines are publicly available. CONCLUSION: The proposed workflow is highly flexible and allows integration of advanced tools at all stages of the imaging process. All parts of this workflow are open-source, simplifying collaboration across different MR platforms or sites and improving reproducibility of results.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho
6.
NMR Biomed ; 34(5): e4218, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31854045

RESUMO

The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B1 limit of 15 µT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B0 shimming and voxel-based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 µT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter-pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE 'Braino' phantom between vendors. High-quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal-to-noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi-site studies with clinical cohorts.


Assuntos
Lasers , Imageamento por Ressonância Magnética/normas , Adulto , Simulação por Computador , Creatinina/metabolismo , Humanos , Metaboloma , Imagens de Fantasmas , Ondas de Rádio , Padrões de Referência , Razão Sinal-Ruído
7.
Cardiol Young ; 31(11): 1796-1806, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33719984

RESUMO

OBJECTIVES: Improved survival has led to a growing population of adults with congenital heart disease (CHD), followed by numerous reports of late complications. Liver disease is a known complication in some patients, with most studies focusing on Fontan associated liver disease. Whether liver disease also exists in other patients with CHD is not fully investigated. Elevated central venous pressure is considered pivotal in the development of liver disease in Fontan associated liver disease, and other patients with alterations in central venous pressure may also be at risk for developing liver fibrosis. We wanted to see if liver fibrosis is present in patients with tetralogy of Fallot. Many patients with tetralogy of Fallot have severe pulmonary regurgitation, which can lead to elevated central venous pressure. Patients with tetralogy of Fallot may be at risk of developing liver fibrosis. MATERIALS AND METHODS: Ten patients (24-56 years) with tetralogy of Fallot and pulmonary regurgitation were investigated for liver fibrosis. All patients were examined with magnetic resonance elastography of liver, hepatobiliary iminodiacetic acid scan, indocyanine green elimination by pulse spectrophotometry, elastography via FibroScan, abdominal ultrasound including liver elastography, and blood samples including liver markers. RESULTS: Three out of ten patients had findings indicating possible liver fibrosis. Two of these had a liver biopsy performed, which revealed fibrosis stage 1 and 2, respectively. The same three patients had an estimated elevated central venous pressure in previous echocardiograms. CONCLUSIONS: Mild liver fibrosis was present in selected patients with tetralogy of Fallot and may be related to elevated central venous pressure.


Assuntos
Cardiopatias Congênitas , Insuficiência da Valva Pulmonar , Tetralogia de Fallot , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Cirrose Hepática/complicações , Tetralogia de Fallot/complicações , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia
8.
J Lipid Res ; 61(7): 1038-1051, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32350078

RESUMO

Multi-component lipid emulsions, rather than soy-oil emulsions, prevent cholestasis by an unknown mechanism. Here, we quantified liver function, bile acid pools, and gut microbial and metabolite profiles in premature parenterally fed pigs given a soy-oil lipid emulsion, Intralipid (IL), a multi component lipid emulsion, SMOFlipid (SMOF), a novel emulsion with a modified fatty-acid composition [experimental emulsion (EXP)], or a control enteral diet (ENT) for 22 days. We assayed serum cholestasis markers, measured total bile acid levels in plasma, liver, and gut contents, and analyzed colonic bacterial 16S rRNA gene sequences and metabolomic profiles. Serum cholestasis markers (i.e., bilirubin, bile acids, and γ-glutamyl transferase) were highest in IL-fed pigs and normalized in those given SMOF, EXP, or ENT. Gut bile acid pools were lowest in the IL treatment and were increased in the SMOF and EXP treatments and comparable to ENT. Multiple bile acids, especially their conjugated forms, were higher in the colon contents of SMOF and EXP than in IL pigs. The colonic microbial communities of SMOF and EXP pigs had lower relative abundance of several gram-positive anaerobes, including Clostridrium XIVa, and higher abundance of Enterobacteriaceae than those of IL and ENT pigs. Differences in lipid and microbial-derived compounds were also observed in colon metabolite profiles. These results indicate that multi-component lipid emulsions prevent cholestasis and restore enterohepatic bile flow in association with gut microbial and metabolomic changes. We conclude that sustained bile flow induced by multi-component lipid emulsions likely exerts a dominant effect in reducing bile acid-sensitive gram-positive bacteria.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/metabolismo , Colestase/microbiologia , Metabolismo dos Lipídeos , Microbiota , Nascimento Prematuro/metabolismo , Nascimento Prematuro/microbiologia , Animais , Colestase/complicações , Nutrição Parenteral , Suínos
9.
Magn Reson Med ; 84(4): 1977-1990, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32281179

RESUMO

PURPOSE: To demonstrate the feasibility of an optimized set of small-tip fast recovery (STFR) MRI scans for rapidly estimating myelin water fraction (MWF) in the brain. METHODS: We optimized a set of STFR scans to minimize the Cramér-Rao Lower Bound of MWF estimates. We evaluated the RMSE of MWF estimates from the optimized scans in simulation. We compared STFR-based MWF estimates (both modeling exchange and not modeling exchange) to multi-echo spin echo (MESE)-based estimates. We used the optimized scans to acquire in vivo data from which a MWF map was estimated. We computed the STFR-based MWF estimates using PERK, a recently developed kernel regression technique, and the MESE-based MWF estimates using both regularized non-negative least squares (NNLS) and PERK. RESULTS: In simulation, the optimized STFR scans led to estimates of MWF with low RMSE across a range of tissue parameters and across white matter and gray matter. The STFR-based MWF estimates that modeled exchange compared well to MESE-based MWF estimates in simulation. When the optimized scans were tested in vivo, the MWF map that was estimated using a 3-compartment model with exchange was closer to the MESE-based MWF map. CONCLUSIONS: The optimized STFR scans appear to be well suited for estimating MWF in simulation and in vivo when we model exchange in training. In this case, the STFR-based MWF estimates are close to the MESE-based estimates.


Assuntos
Bainha de Mielina , Substância Branca , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Água , Substância Branca/diagnóstico por imagem
10.
Magn Reson Med ; 83(2): 492-504, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31418475

RESUMO

PURPOSE: This paper discusses several challenges faced by super-selective pseudo-continuous arterial spin labeling, which is used to quantify territorial perfusion in the cerebral circulation. The effects of off-resonance, pulsatility, vessel movement, and label rotation scheme are investigated, and methods to maximize labeling efficiency and overall image quality are evaluated. A strategy to calculate the territorial perfusion fractions of individual vessels is proposed. METHODS: The effects of off-resonance, label rotation scheme, and vessel movement on labeling efficiency were simulated. Two off-resonance compensation strategies (multiphase prescan, field map), cardiac triggering, and vessel movement were studied in vivo in a group of 10 subjects. Subsequently, a territorial perfusion fraction map was acquired in 2 subjects based on the mean vessel labeling efficiency. RESULTS: Multiphase calibration provided the highest labeling efficiency (P = .002) followed by the field map compensation (P = .037) compared with the uncompensated acquisition. Cardiac triggering resulted in a qualitative improvement of the image and an increase in signal contrast between the perfusion territory and the surrounding tissue (P = .010) but failed to show a significant change in temporal and spatial SNR. The constant clockwise label rotation scheme yielded the highest labeling efficiency. Significant vessel movement (>2 mm according to simulations) was observed in 50% of subjects. The measured territorial perfusion fractions showed good agreement with anatomical data. CONCLUSION: Optimized labeling efficiency resulted in increased image quality and accuracy of territorial perfusion fraction maps. Labeling efficiency depends critically on off-resonance calibration, cardiac triggering, optimal label rotation scheme, and vessel location tracking.


Assuntos
Artérias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Coração/diagnóstico por imagem , Marcadores de Spin , Adulto , Velocidade do Fluxo Sanguíneo , Calibragem , Simulação por Computador , Feminino , Humanos , Angiografia por Ressonância Magnética , Masculino , Perfusão , Reprodutibilidade dos Testes , Razão Sinal-Ruído
11.
Brain Behav Immun ; 85: 46-56, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31026499

RESUMO

New generation, multicomponent parenteral lipid emulsions provide key fatty acids for brain growth and development, such as docosahexaenoic acid (DHA) and arachidonic acid (AA), yet the content may be suboptimal for preterm infants. Our aim was to test whether DHA and AA-enriched lipid emulsions would increase activity, growth, and neurodevelopment in preterm piglets and limit brain inflammation. Cesarean-delivered preterm pigs were given three weeks of either enteral preterm infant formula (ENT) or TPN with one of three parenteral lipid emulsions: Intralipid (IL), SMOFlipid (SMOF) or an experimental emulsion (EXP). Activity was continuously monitored and weekly blood sampling and behavioral field testing performed. At termination of the study, whole body and tissue metrics were collected. Neuronal density was assessed in sections of hippocampus (HC), thalamus, and cortex. Frontal cortex (FC) and HC tissue were assayed for fatty acid profiles and expression of genes of neuronal growth and inflammation. After 3 weeks of treatment, brain DHA content in SMOF, EXP and ENT pigs was higher (P < 0.01) in FC but not HC vs. IL pigs. There were no differences in brain weight or neuron density among treatment groups. Inflammatory cytokine TNFα and IL-1ß expression in brain regions were increased in IL pigs (P < 0.05) compared to other groups. Overall growth velocity was similar among groups, but IL pigs had higher percent body fat and increased insulin resistance compared to other treatments (P < 0.05). ENT pigs spent more time in higher physical activity levels compared to all TPN groups, but there were no differences in exploratory behavior among groups. We conclude that a soybean oil emulsion increased select brain inflammatory cytokines and multicomponent lipid emulsions enriched with DHA and AA in parenteral lipids results in increased cortical DHA and improved body composition without affecting short term neurodevelopmental outcomes.


Assuntos
Ácidos Docosa-Hexaenoicos , Recém-Nascido Prematuro , Animais , Composição Corporal , Encéfalo , Emulsões , Feminino , Óleos de Peixe , Humanos , Recém-Nascido , Azeite de Oliva , Gravidez , Óleo de Soja , Suínos , Triglicerídeos
12.
Magn Reson Med ; 82(3): 1101-1112, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31050011

RESUMO

PURPOSE: GRAPPA is a popular reconstruction method for Cartesian parallel imaging, but is not easily extended to non-Cartesian sampling. We introduce a general and practical GRAPPA algorithm for arbitrary non-Cartesian imaging. METHODS: We formulate a general GRAPPA reconstruction by associating a unique kernel with each unsampled k-space location with a distinct constellation, that is, local sampling pattern. We calibrate these generalized kernels using the Fourier transform phase shift property applied to fully gridded or separately acquired Cartesian Autocalibration signal (ACS) data. To handle the resulting large number of different kernels, we introduce a fast calibration algorithm based on nonuniform FFT (NUFFT) and adoption of circulant ACS boundary conditions. We applied our method to retrospectively under-sampled rotated stack-of-stars/spirals in vivo datasets, and to a prospectively under-sampled rotated stack-of-spirals functional MRI acquisition with a finger-tapping task. RESULTS: We reconstructed all datasets without performing any trajectory-specific manual adaptation of the method. For the retrospectively under-sampled experiments, our method achieved image quality (i.e., error and g-factor maps) comparable to conjugate gradient SENSE (cg-SENSE) and SPIRiT. Functional activation maps obtained from our method were in good agreement with those obtained using cg-SENSE, but required a shorter total reconstruction time (for the whole time-series): 3 minutes (proposed) vs 15 minutes (cg-SENSE). CONCLUSIONS: This paper introduces a general 3D non-Cartesian GRAPPA that is fast enough for practical use on today's computers. It is a direct generalization of original GRAPPA to non-Cartesian scenarios. The method should be particularly useful in dynamic imaging where a large number of frames are reconstructed from a single set of ACS data.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Calibragem , Análise de Fourier , Humanos
13.
Magn Reson Med ; 81(2): 1004-1015, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30187951

RESUMO

PURPOSE: This work aims to investigate the utility of velocity selective inversion pulses for perfusion weighted functional MRI. METHODS: Tracer kinetic properties of velocity selective inversion (VSI) pulses as an input function for an arterial spin labeling (ASL) experiment were characterized in a group of healthy participants. Numerical simulations were conducted to search for a robust set of timing parameters for FMRI time series acquisition with maximal signal to noise ratio efficiency. The performance of three VSI pulse sequences with different timing parameters was compared with a pseudocontinuous ASL sequence in a simple FMRI experiment conducted on healthy participants. RESULTS: The fit to the tracer kinetic model yielded arterial CBV of 1.24% ± 0.52% and 0.45 ± 0.11% and perfusion rates of 60.8 ± 32.3 and 34.4 ± 5.4 mL/min/100 g for gray and white matter, respectively. Bolus arrival times were estimated as 75.7 ± 21 ms and 349 ± 78 ms for gray and white matter, respectively. The FMRI experiments showed that VSI pulses yield comparable sensitivity to PCASL with similar timing parameters (TR = 4 s). However, VSI pulses could be used at a faster acquisition speed (TR = 3 s) and were more sensitive to neuronal activity than PCASL pulses, as evidenced by the 31% higher Z scores obtained on average in the active regions. CONCLUSION: VSI pulses can be very beneficial for perfusion weighted functional MRI because of their tracer kinetic characteristics, which allow a faster acquisition rate while maintaining an efficient labeling input function.


Assuntos
Artérias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Marcadores de Spin , Adulto , Algoritmos , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular/fisiologia , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Cinética , Angiografia por Ressonância Magnética , Pessoa de Meia-Idade , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
14.
Scand J Gastroenterol ; 54(4): 485-491, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30924709

RESUMO

Objectives: Pediatric liver disease (PLD) covers a variety of etiologies and severities, from mild temporary illness to diseases with fatal outcomes. There is a demand for minimally invasive and reliable measures for assessment of the severity of PLD. Indocyanine green (ICG) elimination kinetics to estimate hepatic function has been used in adults for decades, however, due to invasiveness, the use in PLD is still limited. The aim of the present study was to evaluate minimally invasive estimation of ICG elimination by pulse spectrophotometry (ICGLi), in comparison with traditional spectrophotometry using serial blood samples (ICGbs). Methods: One hundred children aged 0-18 years were included in the study. ICG elimination kinetics was measured with ICGLi and ICGbs, and results compared by failure rates, mean difference, limits of agreement, Bland Altman plots and linear regression analysis. Plasma disappearance rates (PDRLi and PDRbs) were used for comparison. Results: One hundred and twelve simultaneous measurements in 87 patients were performed successfully. Mean difference for PDR (%/min) was 3.58 (95% CI 2.69; 4.47). Limits of agreement were -5.06; 12.22. A linear correlation between the two methods with a regression coefficient of 0.83 (SE 0.02 95% CI 0.80; 0.87) was found. For conversion we computed the following equation; PDRbs = 0.83 × PDRLi. Conclusions: The present study shows that ICG PDR can be obtained by a minimally invasive method and thus replace measures by serial blood samples in children with liver disease of different etiologies and severities. However, a systematic relative difference between the two methods exists. Our proposed correction factor needs to be validated in larger cohorts.


Assuntos
Verde de Indocianina/farmacocinética , Testes de Função Hepática/métodos , Fígado/fisiopatologia , Espectrofotometria/métodos , Adolescente , Criança , Pré-Escolar , Corantes/farmacocinética , Dinamarca , Feminino , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Hepatopatias/diagnóstico , Hepatopatias/fisiopatologia , Masculino , Taxa de Depuração Metabólica
15.
Magn Reson Med ; 79(6): 3128-3134, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29096052

RESUMO

PURPOSE: To introduce a framework for rapid prototyping of MR pulse sequences. METHODS: We propose a simple file format, called "TOPPE", for specifying all details of an MR imaging experiment, such as gradient and radiofrequency waveforms and the complete scan loop. In addition, we provide a TOPPE file "interpreter" for GE scanners, which is a binary executable that loads TOPPE files and executes the sequence on the scanner. We also provide MATLAB scripts for reading and writing TOPPE files and previewing the sequence prior to hardware execution. With this setup, the task of the pulse sequence programmer is reduced to creating TOPPE files, eliminating the need for hardware-specific programming. No sequence-specific compilation is necessary; the interpreter only needs to be compiled once (for every scanner software upgrade). We demonstrate TOPPE in three different applications: k-space mapping, non-Cartesian PRESTO whole-brain dynamic imaging, and myelin mapping in the brain using inhomogeneous magnetization transfer. RESULTS: We successfully implemented and executed the three example sequences. By simply changing the various TOPPE sequence files, a single binary executable (interpreter) was used to execute several different sequences. CONCLUSION: The TOPPE file format is a complete specification of an MR imaging experiment, based on arbitrary sequences of a (typically small) number of unique modules. Along with the GE interpreter, TOPPE comprises a modular and flexible platform for rapid prototyping of new pulse sequences. Magn Reson Med 79:3128-3134, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Razão Sinal-Ruído
16.
Magn Reson Med ; 79(3): 1377-1386, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28671320

RESUMO

PURPOSE: Spectrally selective "prewinding" radiofrequency pulses can counteract B0 inhomogeneity in steady-state sequences, but can only prephase a limited range of off-resonance. We propose spectral-spatial small-tip angle prewinding pulses that increase the off-resonance bandwidth that can be successfully prephased by incorporating spatially tailored excitation patterns. THEORY AND METHODS: We present a feasibility study to compare spectral and spectral-spatial prewinding pulses. These pulses add a prephasing term to the target magnetization pattern that aims to recover an assigned off-resonance bandwidth at the echo time. For spectral-spatial pulses, the design bandwidth is centered at the off-resonance frequency for each spatial location in a field map. We use these pulses in the small-tip fast recovery steady-state sequence, which is similar to balanced steady-state free precession. We investigate improvement of spectral-spatial pulses over spectral pulses using simulations and small-tip fast recovery scans of a gel phantom and human brain. RESULTS: In simulation, spectral-spatial pulses yielded lower normalized root mean squared excitation error than spectral pulses. For both experiments, the spectral-spatial pulse images are also qualitatively better (more uniform, less signal loss) than the spectral pulse images. CONCLUSION: Spectral-spatial prewinding pulses can prephase over a larger range of off-resonance than their purely spectral counterparts. Magn Reson Med 79:1377-1386, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Humanos , Imagens de Fantasmas
17.
Scand J Gastroenterol ; 53(6): 748-754, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29595342

RESUMO

OBJECTIVE: To examine lifetime drinking patterns in men and women with alcohol-induced pancreatitis (AIP) in comparison with patients with alcoholic use disorder (AUD) without pancreatic disease. METHODS: Alcohol consumption patterns were assessed using a validated questionnaire, the Lifetime Drinking History (LDH), during an outpatient visit. Patients diagnosed with AIP were matched for gender and age (+/- 5 years) with patients with AUD in addiction treatment. RESULTS: A total of 45 patients with AIP (35 males, 10 females) and 45 AUD patients were included. Alcohol consumption patterns were not significantly different between males and females with AIP and those with history of acute AIP and chronic pancreatitis (CP). Alcohol consumption patterns of AIP and AUD patients were similar in terms of onset age and duration of alcohol consumption, lifetime alcohol intake and drinks per drinking day. A higher proportion of binge drinking was found among patients with AUD than those with AIP (median 1.00 vs. 0.94, p = .01). Males with AUD had lower onset age (15 vs. 16 years, p = .03), higher total amount of spirits (35520 vs. 10450 drinks, p = .04) and higher proportion of binge drinking (1.00 vs. 0.97, p = .01) than males with AIP, whereas females with AIP and AUD had similar drinking patterns. CONCLUSIONS: Alcohol drinking patterns and lifetime drinking history was similar in patients with AIP and patients with AUD. Males with AIP had lower total amount of spirits and lower proportion of binge drinking than those with AUD, suggesting the idiosyncratic etiology of AIP.


Assuntos
Consumo de Bebidas Alcoólicas/epidemiologia , Alcoolismo/epidemiologia , Pancreatite Alcoólica/epidemiologia , Idoso , Cerveja , Feminino , Humanos , Islândia , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Inquéritos e Questionários , Vinho
18.
Magn Reson Med ; 77(3): 1318-1328, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27029318

RESUMO

PURPOSE: To elucidate the dynamic, structural, and molecular properties that create inhomogeneous magnetization transfer (ihMT) contrast. METHODS: Amphiphilic lipids, lamellar phospholipids with cholesterol, and bovine spinal cord (BSC) specimens were examined along with nonlipid systems. Magnetization transfer (MT), enhanced MT (eMT, obtained with double-sided radiofrequency saturation), ihMT (MT - eMT), and dipolar relaxation, T1D , were measured at 2.0 and 11.7 T. RESULTS: The amplitude of ihMT ratio (ihMTR) is positively correlated with T1D values. Both ihMTR and T1D increase with increasing temperature in BSC white matter and in phospholipids and decrease with temperature in other lipids. Changes in ihMTR with temperature arise primarily from alterations in MT rather than eMT. Spectral width of MT, eMT, and ihMT increases with increasing carbon chain length. CONCLUSIONS: Concerted motions of phospholipids in white matter decrease proton spin diffusion leading to increased proton T1D times and increased ihMT amplitudes, consistent with decoupling of Zeeman and dipolar spin reservoirs. Molecular specificity and dynamic sensitivity of ihMT contrast make it a suitable candidate for probing myelin membrane disorders. Magn Reson Med 77:1318-1328, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Bicamadas Lipídicas/química , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Fosfolipídeos/química , Substância Branca/química , Animais , Bovinos , Difusão , Teste de Materiais , Prótons , Temperatura
19.
Magn Reson Med ; 77(4): 1544-1552, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27271292

RESUMO

PURPOSE: Implementing new magnetic resonance experiments, or sequences, often involves extensive programming on vendor-specific platforms, which can be time consuming and costly. This situation is exacerbated when research sequences need to be implemented on several platforms simultaneously, for example, at different field strengths. This work presents an alternative programming environment that is hardware-independent, open-source, and promotes rapid sequence prototyping. METHODS: A novel file format is described to efficiently store the hardware events and timing information required for an MR pulse sequence. Platform-dependent interpreter modules convert the file to appropriate instructions to run the sequence on MR hardware. Sequences can be designed in high-level languages, such as MATLAB, or with a graphical interface. Spin physics simulation tools are incorporated into the framework, allowing for comparison between real and virtual experiments. RESULTS: Minimal effort is required to implement relatively advanced sequences using the tools provided. Sequences are executed on three different MR platforms, demonstrating the flexibility of the approach. CONCLUSION: A high-level, flexible and hardware-independent approach to sequence programming is ideal for the rapid development of new sequences. The framework is currently not suitable for large patient studies or routine scanning although this would be possible with deeper integration into existing workflows. Magn Reson Med 77:1544-1552, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Software , Desenho de Equipamento , Projetos Piloto
20.
Scand J Gastroenterol ; 52(6-7): 762-767, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28276826

RESUMO

OBJECTIVE: To determine the differences in lifetime alcohol intake (LAI) and drinking patterns between patients with alcoholic liver disease (ALD) and alcohol use disorder (AUD) without notable liver injury and between males and females with ALD. METHODS: Alcohol drinking patterns were assessed using the Lifetime Drinking History (LDH) a validated questionnaire, during an outpatient visit. Patients with AUD, currently in addiction treatment, were matched for gender and age (±5 years) with the ALD group. RESULTS: A total of 39 patients with ALD (26 males and 13 females; median age 58) and equal number of AUD patients were included (median age 56 years). The onset age for alcohol drinking and duration of alcohol consumption was similar in ALD and AUD. The number of drinking days was higher in women with ALD than in women with AUD: 4075 [(3224-6504) versus 2092 (1296-3661), p = .0253]. The LAI and drinks per drinking day (DDD) were not significantly different between patients with ALD and AUD. Females with ALD had lower LAI than males with ALD: 32,934 (3224-6504) versus 50,923 (30,360-82,195), p = .0385, fewer DDD (p = .0112), and lower proportion of binge drinking as compared to males with ALD (p = .0274). CONCLUSIONS: The total LAI was similar in patients with ALD and AUD. The number of drinking days over the lifetime was associated with the development of ALD in females. Females with ALD had significantly lower alcohol consumption than men with ALD despite similar duration in years of alcohol intake which supports the concept of female propensity of ALD.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Transtornos Relacionados ao Uso de Álcool/complicações , Hepatopatias Alcoólicas/diagnóstico , Hepatopatias Alcoólicas/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Islândia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores Sexuais , Inquéritos e Questionários , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA