Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 8(11): e1003013, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133391

RESUMO

Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well.


Assuntos
Transferência Genética Horizontal , Família Multigênica , Pectobacterium/genética , Pectobacterium/patogenicidade , Filogenia , Doenças das Plantas/genética , Fatores de Virulência/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Solanum tuberosum/microbiologia , Fatores de Virulência/metabolismo
2.
J Bacteriol ; 194(21): 6004, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23045508

RESUMO

We report the complete and annotated genome sequence of the plant-pathogenic enterobacterium Pectobacterium sp. strain SCC3193, a model strain isolated from potato in Finland. The Pectobacterium sp. SCC3193 genome consists of a 5,164,411-bp [corrected] chromosome, with no plasmids.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Pectobacterium/genética , Análise de Sequência de DNA , Finlândia , Dados de Sequência Molecular , Pectobacterium/isolamento & purificação , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia
3.
Mol Plant Pathol ; 21(3): 349-359, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31872947

RESUMO

Plants of the Brassicales order, including Arabidopsis and many common vegetables, produce toxic isothiocyanates to defend themselves against pathogens. Despite this defence, plant pathogenic microorganisms like Pectobacterium cause large yield losses in fields and during storage of crops. The bacterial gene saxA was previously found to encode isothiocyanate hydrolase that degrades isothiocyanates in vitro. Here we demonstrate in planta that saxA is a virulence factor that can overcome the chemical defence system of Brassicales plants. Analysis of the distribution of saxA genes in Pectobacterium suggests that saxA from three different phylogenetic origins are present within this genus. Deletion of saxA genes representing two of the most common classes from P. odoriferum and P. versatile resulted in significantly reduced virulence on Arabidopsis thaliana and Brassica oleracea. Furthermore, expressing saxA from a plasmid in a potato-specific P. parmentieri strain that does not naturally harbour this gene significantly increased the ability of the strain to macerate Arabidopsis. These findings suggest that a single gene may have a significant role in defining the host range of a plant pathogen.


Assuntos
Arabidopsis/microbiologia , Genes Bacterianos , Pectobacterium/genética , Pectobacterium/patogenicidade , Fatores de Virulência/genética , Isotiocianatos/imunologia , Pectobacterium/classificação , Filogenia , Plasmídeos/genética , Virulência , Fatores de Virulência/classificação
4.
Stand Genomic Sci ; 12: 87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276572

RESUMO

Bacteria of the genus Pectobacterium are economically important plant pathogens that cause soft rot disease on a wide variety of plant species. Here, we report the genome sequence of Pectobacterium carotovorum strain SCC1, a Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980's. The genome of strain SCC1 consists of one circular chromosome of 4,974,798 bp and one circular plasmid of 5524 bp. In total 4451 genes were predicted, of which 4349 are protein coding and 102 are RNA genes.

5.
Front Plant Sci ; 4: 191, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23781227

RESUMO

Soft rot pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall-degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens. In contrast to (hemi)biotrophs such as Pseudomonas, type III secretion systems (T3SS) and T3 effectors do not appear central to pathogenesis of pectobacteria. Indeed, recent genomic analysis of several Pectobacterium species including the emerging pathogen Pectobacterium wasabiae has shown that many strains lack the entire T3SS as well as the T3 effectors. Instead, this analysis has indicated the presence of novel virulence determinants. Resistance to broad host range pectobacteria is complex and does not appear to involve single resistance genes. Instead, activation of plant innate immunity systems including both SA (salicylic acid) and JA (jasmonic acid)/ET (ethylene)-mediated defenses appears to play a central role in attenuation of Pectobacterium virulence. These defenses are triggered by detection of pathogen-associated molecular patterns (PAMPs) or recognition of modified-self such as damage-associated molecular patterns (DAMPs) and result in enhancement of basal immunity (PAMP/DAMP-triggered immunity or pattern-triggered immunity, PTI). In particular plant cell wall fragments released by the action of the degradative enzymes secreted by pectobacteria are major players in enhanced immunity toward these pathogens. Most notably bacterial pectin-degrading enzymes release oligogalacturonide (OG) fragments recognized as DAMPs activating innate immune responses. Recent progress in understanding OG recognition and signaling allows novel genetic screens for OG-insensitive mutants and will provide new insights into plant defense strategies against necrotrophs such as pectobacteria.

6.
PLoS One ; 8(9): e73718, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040039

RESUMO

In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers.


Assuntos
Proteínas de Bactérias/genética , Fímbrias Bacterianas/genética , Família Multigênica , Pectobacterium/genética , Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/patogenicidade , Aggregatibacter actinomycetemcomitans/fisiologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Pectobacterium/patogenicidade , Pectobacterium/fisiologia , Doenças das Plantas/microbiologia , Tubérculos/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Solanum tuberosum/microbiologia , Transcriptoma , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA