Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(7): 1771-1780.e12, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31199917

RESUMO

Cargo trafficking along microtubules is exploited by eukaryotic viruses, but no such examples have been reported in bacteria. Several large Pseudomonas phages assemble a dynamic, tubulin-based (PhuZ) spindle that centers replicating phage DNA sequestered within a nucleus-like structure. Here, we show that capsids assemble on the membrane and then move rapidly along PhuZ filaments toward the phage nucleus for DNA packaging. The spindle rotates the phage nucleus, distributing capsids around its surface. PhuZ filaments treadmill toward the nucleus at a constant rate similar to the rate of capsid movement and the linear velocity of nucleus rotation. Capsids become trapped along mutant static PhuZ filaments that are defective in GTP hydrolysis. Our results suggest a transport and distribution mechanism in which capsids attached to the sides of filaments are trafficked to the nucleus by PhuZ polymerization at the poles, demonstrating that the phage cytoskeleton evolved cargo-trafficking capabilities in bacteria.


Assuntos
Proteínas de Bactérias , Citoesqueleto , DNA Viral , Fagos de Pseudomonas , Pseudomonas , Tubulina (Proteína) , Vírion , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , DNA Viral/biossíntese , DNA Viral/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/virologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Vírion/genética , Vírion/metabolismo
2.
Nature ; 577(7789): 244-248, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819262

RESUMO

All viruses require strategies to inhibit or evade the immune pathways of cells that they infect. The viruses that infect bacteria, bacteriophages (phages), must avoid immune pathways that target nucleic acids, such as CRISPR-Cas and restriction-modification systems, to replicate efficiently1. Here we show that jumbo phage ΦKZ segregates its DNA from immunity nucleases of its host, Pseudomonas aeruginosa, by constructing a proteinaceous nucleus-like compartment. ΦKZ is resistant to many immunity mechanisms that target DNA in vivo, including two subtypes of CRISPR-Cas3, Cas9, Cas12a and the restriction enzymes HsdRMS and EcoRI. Cas proteins and restriction enzymes are unable to access the phage DNA throughout the infection, but engineering the relocalization of EcoRI inside the compartment enables targeting of the phage and protection of host cells. Moreover, ΦKZ is sensitive to Cas13a-a CRISPR-Cas enzyme that targets RNA-probably owing to phage mRNA localizing to the cytoplasm. Collectively, we propose that Pseudomonas jumbo phages evade a broad spectrum of DNA-targeting nucleases through the assembly of a protein barrier around their genome.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Proteínas Virais/química , Sistemas CRISPR-Cas , DNA Viral/química , Genoma Viral , Fagos de Pseudomonas/química
3.
Cell Host Microbe ; 32(7): 1050-1058.e7, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38870941

RESUMO

Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.


Assuntos
DNA Viral , Genoma Viral , Fagos de Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , DNA Viral/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Vírion/metabolismo , Replicação Viral , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Lipídeos , Replicação do DNA
4.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711836

RESUMO

Host-pathogen interactions (HPIs) are pivotal in regulating establishment, progression, and outcome of an infection. Affinity-purification mass spectrometry has become instrumental for the characterization of HPIs, however the targeted nature of exogenously expressing individual viral proteins has limited its utility to the analysis of relatively small pathogens. Here we present the use of co-fractionation mass spectrometry (SEC-MS) for the high-throughput analysis of HPIs from native viral infections of two jumbophages ( ϕ KZ and ϕ PA3) in Pseudomonas aeruginosa . This enabled the detection > 6000 unique host-pathogen and > 200 pathogen-pathogen interactions for each phage, encompassing > 50% of the phage proteome. Interactome-wide comparison across phages showed similar perturbed protein interactions suggesting fundamentally conserved mechanisms of phage predation within the KZ-like phage family. Prediction of novel ORFs revealed a ϕ PA3 complex showing strong structural and sequence similarity to ϕ KZ nvRNAp, suggesting ϕ PA3 also possesses two RNA polymerases acting at different stages of the infection cycle. We further expanded our understanding on the molecular organization of the virion packaged and injected proteome by identifying 23 novel virion components and 5 novel injected proteins, as well as providing the first evidence for interactions between KZ-like phage proteins and the host ribosome. To enable accessibility to this data, we developed PhageMAP, an online resource for network query, visualization, and interaction prediction ( https://phagemap.ucsf.edu/ ). We anticipate this study will lay the foundation for the application of co-fractionation mass spectrometry for the scalable profiling of hostpathogen interactomes and protein complex dynamics upon infection.

5.
Nat Commun ; 14(1): 927, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36807264

RESUMO

To protect themselves from host attack, numerous jumbo bacteriophages establish a phage nucleus-a micron-scale, proteinaceous structure encompassing the replicating phage DNA. Bacteriophage and host proteins associated with replication and transcription are concentrated inside the phage nucleus while other phage and host proteins are excluded, including CRISPR-Cas and restriction endonuclease host defense systems. Here, we show that nucleus fragments isolated from ϕPA3 infected Pseudomonas aeruginosa form a 2-dimensional lattice, having p2 or p4 symmetry. We further demonstrate that recombinantly purified primary Phage Nuclear Enclosure (PhuN) protein spontaneously assembles into similar 2D sheets with p2 and p4 symmetry. We resolve the dominant p2 symmetric state to 3.9 Šby cryo-EM. Our structure reveals a two-domain core, organized into quasi-symmetric tetramers. Flexible loops and termini mediate adaptable inter-tetramer contacts that drive subunit assembly into a lattice and enable the adoption of different symmetric states. While the interfaces between subunits are mostly well packed, two are open, forming channels that likely have functional implications for the transport of proteins, mRNA, and small molecules.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Proteínas Virais/metabolismo , Sistemas CRISPR-Cas
6.
Nat Commun ; 14(1): 5156, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620325

RESUMO

Host-pathogen interactions are pivotal in regulating establishment, progression, and outcome of an infection. While affinity-purification mass spectrometry has become instrumental in characterizing such interactions, it suffers from limitations in scalability and biological authenticity. Here we present the use of co-fractionation mass spectrometry for high throughput analysis of host-pathogen interactions from native viral infections of two jumbophages (ϕKZ and ϕPA3) in Pseudomonas aeruginosa. This approach enabled the detection of > 6000 unique host-pathogen interactions for each phage, encompassing > 50% of their respective proteomes. This deep coverage provided evidence for interactions between KZ-like phage proteins and the host ribosome, and revealed protein complexes for previously undescribed phage ORFs, including a ϕPA3 complex showing strong structural and sequence similarity to ϕKZ non-virion RNA polymerase. Interactome-wide comparison across phages showed similar perturbed protein interactions suggesting fundamentally conserved mechanisms of phage predation within the KZ-like phage family. To enable accessibility to this data, we developed PhageMAP, an online resource for network query, visualization, and interaction prediction ( https://phagemap.ucsf.edu/ ). We anticipate this study will lay the foundation for the application of co-fractionation mass spectrometry for the scalable profiling of host-pathogen interactomes and protein complex dynamics upon infection.


Assuntos
Bacteriófagos , Proteômica , Bactérias , Bacteriófagos/genética , Fracionamento Químico , Cromatografia de Afinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA